Text aus multimodalem Prompt generieren

Dieses Beispiel zeigt, wie Sie mit dem Gemini-Modell Text aus einem multimodalen Prompt generieren. Der Prompt besteht aus drei Bildern und zwei Text-Prompts. Das Modell generiert eine Textantwort, die die Bilder und Text-Prompts beschreibt.

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using Google.Protobuf;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;

public class MultimodalMultiImage
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-2.0-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        ByteString colosseum = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png");

        ByteString forbiddenCity = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png");

        ByteString christRedeemer = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png");

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { InlineData = new() { MimeType = "image/png", Data = colosseum }},
                        new Part { Text = "city: Rome, Landmark: the Colosseum" },
                        new Part { InlineData = new() { MimeType = "image/png", Data = forbiddenCity }},
                        new Part { Text = "city: Beijing, Landmark: Forbidden City"},
                        new Part { InlineData = new() { MimeType = "image/png", Data = christRedeemer }}
                    }
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
        }
        return fullText.ToString();
    }

    private static async Task<ByteString> ReadImageFileAsync(string url)
    {
        using HttpClient client = new();
        using var response = await client.GetAsync(url);
        byte[] imageBytes = await response.Content.ReadAsByteArrayAsync();
        return ByteString.CopyFrom(imageBytes);
    }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const {VertexAI} = require('@google-cloud/vertexai');
const axios = require('axios');

async function getBase64(url) {
  const image = await axios.get(url, {responseType: 'arraybuffer'});
  return Buffer.from(image.data).toString('base64');
}

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function sendMultiModalPromptWithImage(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-2.0-flash-001'
) {
  // For images, the SDK supports base64 strings
  const landmarkImage1 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png'
  );
  const landmarkImage2 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png'
  );
  const landmarkImage3 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png'
  );

  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  const generativeVisionModel = vertexAI.getGenerativeModel({
    model: model,
  });

  // Pass multimodal prompt
  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            inlineData: {
              data: landmarkImage1,
              mimeType: 'image/png',
            },
          },
          {
            text: 'city: Rome, Landmark: the Colosseum',
          },

          {
            inlineData: {
              data: landmarkImage2,
              mimeType: 'image/png',
            },
          },
          {
            text: 'city: Beijing, Landmark: Forbidden City',
          },
          {
            inlineData: {
              data: landmarkImage3,
              mimeType: 'image/png',
            },
          },
        ],
      },
    ],
  };

  // Create the response
  const response = await generativeVisionModel.generateContent(request);
  // Wait for the response to complete
  const aggregatedResponse = await response.response;
  // Select the text from the response
  const fullTextResponse =
    aggregatedResponse.candidates[0].content.parts[0].text;

  console.log(fullTextResponse);
}

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.