Text aus einem Bild mit Sicherheitseinstellungen generieren

Dieses Beispiel zeigt, wie Sie das Gemini-Modell mit Sicherheitseinstellungen verwenden, um Text aus einem Bild zu generieren.

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using System.Text;
using System.Threading.Tasks;
using static Google.Cloud.AIPlatform.V1.SafetySetting.Types;

public class WithSafetySettings
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-2.0-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();


        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = "Hello!" }
                    }
                }
            },
            SafetySettings =
            {
                new SafetySetting
                {
                    Category = HarmCategory.HateSpeech,
                    Threshold = HarmBlockThreshold.BlockLowAndAbove
                },
                new SafetySetting
                {
                    Category = HarmCategory.DangerousContent,
                    Threshold = HarmBlockThreshold.BlockMediumAndAbove
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            // Check if the content has been blocked for safety reasons.
            bool blockForSafetyReason = responseItem.Candidates[0].FinishReason == Candidate.Types.FinishReason.Safety;
            if (blockForSafetyReason)
            {
                fullText.Append("Blocked for safety reasons");
            }
            else
            {
                fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
            }
        }

        return fullText.ToString();
    }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const {
  VertexAI,
  HarmCategory,
  HarmBlockThreshold,
} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
const PROJECT_ID = process.env.CAIP_PROJECT_ID;
const LOCATION = 'us-central1';
const MODEL = 'gemini-2.0-flash-001';

async function setSafetySettings() {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: MODEL,
    // The following parameters are optional
    // They can also be passed to individual content generation requests
    safetySettings: [
      {
        category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
      },
      {
        category: HarmCategory.HARM_CATEGORY_HARASSMENT,
        threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
      },
    ],
  });

  const request = {
    contents: [{role: 'user', parts: [{text: 'Tell me something dangerous.'}]}],
  };

  console.log('Prompt:');
  console.log(request.contents[0].parts[0].text);
  console.log('Streaming Response Text:');

  // Create the response stream
  const responseStream = await generativeModel.generateContentStream(request);

  // Log the text response as it streams
  for await (const item of responseStream.stream) {
    if (item.candidates[0].finishReason === 'SAFETY') {
      console.log('This response stream terminated due to safety concerns.');
      break;
    } else {
      process.stdout.write(item.candidates[0].content.parts[0].text);
    }
  }
  console.log('This response stream terminated due to safety concerns.');
}

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.