Bilder, Video, Audio und Text mit Gemini 1.5 Pro verarbeiten

In diesem Beispiel wird gezeigt, wie Bilder, Video, Audio und Text gleichzeitig verarbeitet werden. Dieses Beispiel funktioniert nur mit Gemini 1.5 Pro.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class MultimodalAllInput
{
    public async Task<string> AnswerFromMultimodalInput(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = "Watch each frame in the video carefully and answer the questions.\n"
                  + "Only base your answers strictly on what information is available in "
                  + "the video attached. Do not make up any information that is not part "
                  + "of the video and do not be too verbose, be to the point.\n\n"
                  + "Questions:\n"
                  + "- When is the moment in the image happening in the video? "
                  + "Provide a timestamp.\n"
                  + "- What is the context of the moment and what does the narrator say about it?";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "video/mp4", FileUri = "gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4" } },
                        new Part { FileData = new() { MimeType = "image/png", FileUri = "gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Go-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Go API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// multimodalPrompt is a sample prompt type consisting of one video, one image, and a text question.
type multimodalPrompt struct {
	// video and image are Google Cloud Storage paths starting with "gs://"
	video, image string
	// question is the question asked to the model
	question string
}

// generateContentFromVideoWithAudio shows how to send a multi-modal prompt to a model, writing the response to
// the provided io.Writer.
func generateContentFromVideoWithAudio(w io.Writer, prompt multimodalPrompt, projectID, location, modelName string) error {
	// prompt := multimodalPrompt{
	// 	video: "gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4",
	// 	image: "gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png",
	// 	question: `
	// 		Watch each frame in the video carefully and answer the questions.
	// 		Only base your answers strictly on what information is available in the video attached.
	// 		Do not make up any information that is not part of the video and do not be too
	// 		verbose, be to the point.
	//
	// 		Questions:
	// 		- When is the moment in the image happening in the video? Provide a timestamp.
	// 		- What is the context of the moment and what does the narrator say about it?
	// `,
	// location := "us-central1"
	// modelName := "gemini-1.5-pro-preview-0409"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	vidPart := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext(prompt.video)),
		FileURI:  prompt.video,
	}

	imgPart := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext(prompt.image)),
		FileURI:  prompt.image,
	}

	res, err := model.GenerateContent(ctx, vidPart, imgPart, genai.Text(prompt.question))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class MultimodalAllInput {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    multimodalAllInput(projectId, location, modelName);
  }

  // A request containing a text prompt, a video, and a picture.
  public static String multimodalAllInput(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String videoUri = "gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4";
      String imageUri = "gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              PartMaker.fromMimeTypeAndData("video/mp4", videoUri),
              PartMaker.fromMimeTypeAndData("image/png", imageUri),
              "Watch each frame in the video carefully and answer the questions.\n"
                  + "Only base your answers strictly on what information is available in "
                  + "the video attached. Do not make up any information that is not part "
                  + "of the video and do not be too verbose, be to the point.\n\n"
                  + "Questions:\n"
                  + "- When is the moment in the image happening in the video? "
                  + "Provide a timestamp.\n"
                  + "- What is the context of the moment and what does the narrator say about it?"
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function analyze_all_modalities(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-pro-preview-0409',
  });

  const videoFilePart = {
    file_data: {
      file_uri:
        'gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4',
      mime_type: 'video/mp4',
    },
  };
  const imageFilePart = {
    file_data: {
      file_uri:
        'gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png',
      mime_type: 'image/png',
    },
  };

  const textPart = {
    text: `
    Watch each frame in the video carefully and answer the questions.
    Only base your answers strictly on what information is available in the video attached.
    Do not make up any information that is not part of the video and do not be too
    verbose, be to the point.

    Questions:
    - When is the moment in the image happening in the video? Provide a timestamp.
    - What is the context of the moment and what does the narrator say about it?`,
  };

  const request = {
    contents: [{role: 'user', parts: [videoFilePart, imageFilePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


  import vertexai
  from vertexai.generative_models import GenerativeModel, Part

  # TODO(developer): Update and un-comment below lines
  # project_id = "PROJECT_ID"

  vertexai.init(project=project_id, location="us-central1")

  model = GenerativeModel(model_name="gemini-1.5-flash-001")

  video_file_uri = (
      "gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4"
  )
  video_file = Part.from_uri(video_file_uri, mime_type="video/mp4")

  image_file_uri = "gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png"
  image_file = Part.from_uri(image_file_uri, mime_type="image/png")

  prompt = """
  Watch each frame in the video carefully and answer the questions.
  Only base your answers strictly on what information is available in the video attached.
  Do not make up any information that is not part of the video and do not be too
  verbose, be to the point.

  Questions:
  - When is the moment in the image happening in the video? Provide a timestamp.
  - What is the context of the moment and what does the narrator say about it?
"""

  contents = [
      video_file,
      image_file,
      prompt,
  ]

  response = model.generate_content(contents)
  print(response.text)

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.