문서 이해

Gemini 요청에 PDF를 추가하여 포함된 PDF 콘텐츠를 이해하는 것과 관련된 작업을 수행할 수 있습니다. 이 페이지에서는 Google Cloud 콘솔과 Vertex AI API를 사용하여 Vertex AI에서 Gemini에 대한 요청에 PDF를 추가하는 방법을 보여줍니다.

지원되는 모델

다음 표에는 문서 인식을 지원하는 모델이 나와 있습니다.

모델 PDF 형식 세부정보

Gemini 1.5 Flash

Gemini 1.5 Flash 모델 카드로 이동

프롬프트당 최대 페이지 수: 300

최대 PDF 파일 크기: 30MB

Gemini 1.5 Pro

Gemini 1.5 Pro 모델 카드로 이동

프롬프트당 최대 페이지 수: 300

최대 PDF 파일 크기: 30MB

Gemini 1.0 Pro Vision

Gemini 1.0 Pro Vision 모델 카드로 이동

프롬프트당 최대 페이지 수: 16

최대 PDF 파일 크기: 30MB

Gemini 모델에서 지원되는 언어 목록은 모델 정보 Google 모델을 참조하세요. 멀티모달 프롬프트를 설계하는 방법에 대한 자세한 내용은 멀티모달 프롬프트 설계를 참조하세요. 모바일 및 웹 앱에서 Gemini를 직접 사용할 수 있는 방법을 찾는 경우에는 Android, Swift, 웹을 위한 Google AI SDK를 참조하세요.

요청에 문서 추가

Gemini에 대한 요청에 하나의 PDF를 추가할 수 있습니다.

단일 PDF

다음 탭에서는 Python SDK를 사용하여 프롬프트 요청에 PDF를 포함하는 방법을 보여줍니다. 이 PDF 샘플은 모든 Gemini 멀티모달 모델에서 작동합니다.

Python

Vertex AI SDK for Python을 설치하거나 업데이트하는 방법은 Vertex AI SDK for Python 설치를 참조하세요. 자세한 내용은 Vertex AI SDK for Python API 참고 문서를 참조하세요.

스트리밍 및 비스트리밍 응답

모델이 스트리밍 응답을 생성할지 아니면 비스트리밍 응답을 생성할지 선택할 수 있습니다. 스트리밍은 생성되는 프롬프트에 대한 응답을 수신합니다. 즉, 모델이 출력 토큰을 생성하는 즉시 출력 토큰이 전송됩니다. 프롬프트에 대한 비스트리밍 응답은 모든 출력 토큰이 생성된 후에만 전송됩니다.

스트리밍 응답의 경우 generate_contentstream 매개변수를 사용합니다.

  response = model.generate_content(contents=[...], stream = True)
  

비스트리밍 응답의 경우 매개변수를 삭제하거나 매개변수를 False로 설정합니다.

샘플 코드

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"

vertexai.init(project=project_id, location="us-central1")

model = GenerativeModel(model_name="gemini-1.5-flash-001")

prompt = """
You are a very professional document summarization specialist.
Please summarize the given document.
"""

pdf_file_uri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
pdf_file = Part.from_uri(pdf_file_uri, mime_type="application/pdf")
contents = [pdf_file, prompt]

response = model.generate_content(contents)
print(response.text)

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작의 Java 설정 안내를 따르세요. 자세한 내용은 Gemini용 Vertex AI Java SDK 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

스트리밍 및 비스트리밍 응답

모델이 스트리밍 응답을 생성할지 아니면 비스트리밍 응답을 생성할지 선택할 수 있습니다. 스트리밍은 생성되는 프롬프트에 대한 응답을 수신합니다. 즉, 모델이 출력 토큰을 생성하는 즉시 출력 토큰이 전송됩니다. 프롬프트에 대한 비스트리밍 응답은 모든 출력 토큰이 생성된 후에만 전송됩니다.

스트리밍 응답의 경우 generateContentStream 메서드를 사용합니다.

  public ResponseStream generateContentStream(Content content)
  

비스트리밍 응답의 경우 generateContent 메서드를 사용합니다.

  public GenerateContentResponse generateContent(Content content)
  

샘플 코드


import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class PdfInput {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    pdfInput(projectId, location, modelName);
  }

  // Analyzes the given video input.
  public static String pdfInput(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String pdfUri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "You are a very professional document summarization specialist.\n"
                  + "Please summarize the given document.",
              PartMaker.fromMimeTypeAndData("application/pdf", pdfUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);
      return output;
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 생성형 AI 빠른 시작: Node.js SDK 사용의 Node.js 설정 안내를 따르세요. 자세한 내용은 Gemini용 Node.js SDK 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

스트리밍 및 비스트리밍 응답

모델이 스트리밍 응답을 생성할지 아니면 비스트리밍 응답을 생성할지 선택할 수 있습니다. 스트리밍은 생성되는 프롬프트에 대한 응답을 수신합니다. 즉, 모델이 출력 토큰을 생성하는 즉시 출력 토큰이 전송됩니다. 프롬프트에 대한 비스트리밍 응답은 모든 출력 토큰이 생성된 후에만 전송됩니다.

스트리밍 응답의 경우 generateContentStream 메서드를 사용합니다.

  const streamingResp = await generativeModel.generateContentStream(request);
  

비스트리밍 응답의 경우 generateContent 메서드를 사용합니다.

  const streamingResp = await generativeModel.generateContent(request);
  

샘플 코드

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function analyze_pdf(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-pro-preview-0409',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',
      mime_type: 'application/pdf',
    },
  };
  const textPart = {
    text: `
    You are a very professional document summarization specialist.
    Please summarize the given document.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

C#

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용C# 설정 안내를 따르세요. 자세한 내용은 Vertex AI C# API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class PdfInput
{
    public async Task<string> SummarizePdf(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"You are a very professional document summarization specialist.
Please summarize the given document.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "application/pdf", FileUri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf" }}
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

모델 매개변수 설정

멀티모달 모델에서 다음 모델 매개변수를 설정할 수 있습니다.

Top-P

Top-P는 모델이 출력용 토큰을 선택하는 방식을 변경합니다. 토큰은 확률의 합이 Top-P 값과 같아질 때까지 확률이 가장 높은 것부터(Top-K 참조) 가장 낮은 것까지 선택됩니다. 예를 들어 토큰 A, B, C의 확률이 0.3, 0.2, 0.1이고 Top-P 값이 0.5이면 모델이 온도(temperature)를 사용해서 다음 토큰으로 A 또는 B를 선택하고 C는 후보에서 제외합니다.

임의성이 낮은 응답에 낮은 값을 지정하고 임의성이 높은 응답에 높은 값을 지정합니다.

Top-K

Top-K는 모델이 출력용 토큰을 선택하는 방식을 변경합니다. Top-K가 1이면 선택된 토큰이 모델의 어휘에 포함된 모든 토큰 중에서 가장 확률이 높다는 의미입니다(그리디 디코딩이라고도 함). 반면에 Top-K가 3이면 온도(temperature)를 사용하여 가장 확률이 높은 3개 토큰 중에서 다음 토큰이 선택된다는 의미입니다.

각 토큰 선택 단계에서 확률이 가장 높은 Top-K 토큰이 샘플링됩니다. 그런 다음 Top-P를 기준으로 토큰을 추가로 필터링하고 온도(temperature) 샘플링을 사용하여 최종 토큰을 선택합니다.

임의성이 낮은 응답에 낮은 값을 지정하고 임의성이 높은 응답에 높은 값을 지정합니다.

온도

온도(temperature)는 응답 생성 중 샘플링에 사용되며 topPtopK가 적용될 때 발생합니다. 온도(temperature)는 토큰 선택의 무작위성 수준을 제어합니다. 온도(temperature)가 낮을수록 자유롭거나 창의적인 답변과 거리가 먼 응답이 필요한 프롬프트에 적합하고, 온도(temperature)가 높을수록 보다 다양하거나 창의적인 결과로 이어질 수 있습니다. 온도(temperature)가 0이면 확률이 가장 높은 토큰이 항상 선택됩니다. 이 경우 특정 프롬프트에 대한 응답은 대부분 확정적이지만 여전히 약간의 변형이 가능합니다.

모델이 너무 일반적이거나, 너무 짧은 응답을 반환하거나 모델이 대체 응답을 제공할 경우에는 온도(temperature)를 높여보세요.

유효한 매개변수 값

매개변수 Gemini 1.0 Pro Vision Gemini 1.5 Pro Gemini 1.5 Flash
Top-K 1~40(기본값 32) 지원되지 않음 지원되지 않음
Top-P 0~1.0(기본값 1.0) 0~1.0(기본값 0.95) 0~1.0(기본값 0.95)
온도 0~1.0(기본값 0.4) 0~2.0(기본값 1.0) 0~2.0(기본값 1.0)

문서 요구사항

PDF의 필수 MIME 유형은 application/pdf입니다.

PDF 권장사항

PDF를 사용할 때 최상의 결과를 얻으려면 다음 권장사항과 정보를 사용하세요.

  • PDF는 이미지로 취급되므로 PDF의 한 페이지는 하나의 이미지로 취급됩니다.
    • 지원되는 페이지 수는 모델이 지원할 수 있는 이미지 수로 제한됩니다. Gemini 1.0 Pro Vision의 한도는 16개입니다. Gemini 1.5 Pro 및 Gemini 1.5 Flash의 한도는 300개니다. 문서가 긴 경우 여러 PDF로 분할하여 처리하는 것이 좋습니다.
    • PDF를 입력으로 사용하는 경우 비용은 Gemini 이미지 가격을 따릅니다. 예를 들어 Gemini API 호출에 2페이지 PDF를 포함하면 두 개의 이미지 처리에 대한 입력 수수료가 발생합니다.
  • 프롬프트에 단일 PDF가 포함된 경우 텍스트 프롬프트 앞에 PDF를 배치합니다.
  • 스캔한 이미지에 텍스트를 사용하는 대신 텍스트로 렌더링된 텍스트로 생성된 PDF를 사용합니다. 이 형식은 머신이 텍스트를 읽을 수 있으므로 스캔한 이미지 PDF에 비해 모델이 더 쉽게 수정, 검색, 조작할 수 있습니다. 따라서 계약서와 같이 텍스트가 많은 문서를 작업할 때 최적의 결과를 얻을 수 있습니다.

제한사항

Gemini 멀티모달 모델은 많은 멀티모달 사용 사례에서 강력하지만 모델의 제한사항을 이해하는 것이 중요합니다.

  • 공간 추론: 이 모델은 PDF에 있는 텍스트 또는 객체 수를 정확하게 맞히지 못합니다. 대략적인 객체 수만 반환할 수 있습니다.
  • 정확성: 이 모델은 PDF 문서에서 필기 텍스를 해석할 때 할루시네이션이 발생할 수 있습니다.

다음 단계