LlamaIndex in Vertex AI für RAG API

Retrieval Augmented Generation (RAG) ist eine Technik, die die Funktionen von generativen Modellen verbessert, insbesondere von Large Language Models (LLMs). Es kombiniert die Leistungsfähigkeit von LLMs mit externen Wissensquellen wie Dokumenten und Datenbanken, um genauere und informative Antworten zu generieren.

Weitere Informationen zur Funktionsweise von RAG finden Sie unter Retrieval Augmented Generation Übersicht (RAG).

Unterstützte Modelle

Modell Version
Gemini 1.5 Pro, gemini-1.5-pro-001
Gemini 1.0 Pro Vision gemini-1.0-pro-vision-001
Gemini 1.0 Pro gemini-1.0-pro-001
gemini-1.0-pro-002
Gemini gemini-experimental

Beispielsyntax

Syntax zum Erstellen eines RAG-Korpus.

curl

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora\
  -d '{
  "display_name" : "...",
  "description": ".."
}'

Python

corpus = rag.create_corpus(display_name=..., description=...)
print(corpus)

Parameterliste

Einzelheiten zur Implementierung finden Sie in den Beispielen.

Korpusverwaltung

Informationen zu einem RAG-Korpus finden Sie unter Corpus-Verwaltung.

RagCorpus erstellen

Parameter

display_name

Optional: string

Der Anzeigename des RagCorpus.

description

Optional: string

Die Beschreibung des RagCorpus.

RagCorpora auflisten

Parameter

page_size

Optional: int

Die Standardgröße der Listenseite

page_token

Optional: string

Das Standardtoken der Listenseite Wird normalerweise aus [ListRagCorporaResponse.next_page_token][] des vorherigen [VertexRagDataService.ListRagCorpora][]-Aufrufs abgerufen.

RagCorpus herunterladen

Parameter

rag_corpus_id

string

Die ID der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

RagCorpus löschen

Parameter

rag_corpus_id

string

Die ID der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

RagFile hochladen

Parameter

rag_corpus_id

string

Die ID der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

display_name

Optional: string

Der Anzeigename des RagCorpus.

description

Optional: string

Die Beschreibung des RagCorpus.

Dateiverwaltung

Informationen zu einer RAG-Datei finden Sie unter Corpus-Verwaltung.

RagFile importieren

Parameter

rag_corpus_id

string

Die ID der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

gcs_source.uris

list

Cloud Storage-URI, der die Uploaddatei enthält

google_drive_source.resource_id

Optional: string

Der Typ der Google Drive-Ressource.

google_drive_source.resource_ids.resource_type

Optional: string

Die ID der Google Drive-Ressource.

rag_file_chunking_config.chunk_size

Optional: int

Anzahl der Tokens, die jeder Block haben sollte.

rag_file_chunking_config.chunk_overlap

Optional: int

Die Anzahl der Tokens überlappen sich zwischen zwei Blöcken.

RagFiles auflisten

Parameter

rag_corpus_id

string

Die ID der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}

page_size

Optional: int

Die Standardgröße der Listenseite

page_token

Optional: string

Das Standardtoken der Listenseite Wird normalerweise aus [ListRagCorporaResponse.next_page_token][] des vorherigen [VertexRagDataService.ListRagCorpora][]<-Aufrufs abgerufen.

RagFile abrufen

Parameter

rag_file_id

string

Die ID der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_file_id}

RagFile löschen

Parameter

rag_file_id

string

Die ID der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_file_id}

Abruf und Vorhersage

Abruf

Parameter Beschreibung
similarity_top_k Steuert die maximale Anzahl von Kontexten, die abgerufen werden.
vector_distance_threshold Es werden nur Kontexte mit einer kleineren Entfernung als der Grenzwert berücksichtigt.

Vorhersage

Parameter

model_id

string

LLM-Modell für die Inhaltsgenerierung

rag_corpora

string

Der Name der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}

text

string (list)

Der Text an LLM für das Generieren von Inhalten. Höchstwert: 1 Liste.

vector_distance_threshold

Optional: double

Es werden nur Kontexte mit einer Vektordistanz zurückgegeben, die kleiner als der Grenzwert ist.

similarity_top_k

Optional: int

Die Anzahl der Top-Kontexte, die abgerufen werden sollen.

Beispiele

RAG-Korpus erstellen

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • CORPUS_DISPLAY_NAME: Der Anzeigename von RagCorpus.
  • CORPUS_DESCRIPTION: Die Beschreibung von RagCorpus.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora

JSON-Text der Anfrage:

{
  "display_name" : "CORPUS_DISPLAY_NAME",
  "description": "CORPUS_DESCRIPTION"
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora" | Select-Object -Expand Content
Sie sollten einen erfolgreichen Statuscode (2xx) erhalten.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# display_name = "test_corpus"
# description = "Corpus Description"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

corpus = rag.create_corpus(display_name=display_name, description=description)
print(corpus)

RAG-Korpus auflisten

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • PAGE_SIZE: Die Standardgröße der Listenseite Sie können die Anzahl der RagCorpora anpassen, die pro Seite zurückgegeben werden sollen, indem Sie den Parameter page_size aktualisieren.
  • PAGE_TOKEN: Das Standardtoken der Listenseite Wird normalerweise mit ListRagCorporaResponse.next_page_token des vorherigen VertexRagDataService.ListRagCorpora-Aufrufs abgerufen.

HTTP-Methode und URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN"

PowerShell

Führen Sie folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN" | Select-Object -Expand Content
Sie sollten einen erfolgreichen Statuscode (2xx) und eine Liste von RagCorpora unter dem angegebenen PROJECT_ID erhalten.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

corpora = rag.list_corpora()
print(corpora)

RAG-Korpus abrufen

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • RAG_CORPUS_ID: Die ID der Ressource RagCorpus.

HTTP-Methode und URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID"

PowerShell

Führen Sie folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID" | Select-Object -Expand Content
Eine erfolgreiche Antwort gibt die Ressource RagCorpus zurück.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# corpus_name = "projects/{project_id}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

corpus = rag.get_corpus(name=corpus_name)
print(corpus)

RAG-Korpus löschen

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • RAG_CORPUS_ID: Die ID der Ressource RagCorpus.

HTTP-Methode und URL:

DELETE https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X DELETE \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID"

PowerShell

Führen Sie folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID" | Select-Object -Expand Content
Eine erfolgreiche Antwort gibt DeleteOperationMetadata zurück.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# corpus_name = "projects/{project_id}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

rag.delete_corpus(name=corpus_name)
print(f"Corpus {corpus_name} deleted.")

RAG-Datei hochladen

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • RAG_CORPUS_ID: Die ID der Ressource RagCorpus.
  • INPUT_FILE: der Pfad einer lokalen Datei.
  • FILE_DISPLAY_NAME: Der Anzeigename von RagFile.
  • RAG_FILE_DESCRIPTION: Die Beschreibung von RagFile.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload

JSON-Text der Anfrage:

{
 "rag_file": {
  "display_name": "FILE_DISPLAY_NAME",
  "description": "RAG_FILE_DESCRIPTION"
 }
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen INPUT_FILE und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @INPUT_FILE \
"https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen INPUT_FILE und führen Sie den folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile INPUT_FILE `
-Uri "https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload" | Select-Object -Expand Content
Eine erfolgreiche Antwort gibt die Ressource RagFile zurück. Die letzte Komponente des Feldes RagFile.name ist der vom Server generierte rag_file_id.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# corpus_name = "projects/{project_id}/locations/us-central1/ragCorpora/{rag_corpus_id}"
# path = "path/to/local/file.txt"
# display_name = "file_display_name"
# description = "file description"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

rag_file = rag.upload_file(
    corpus_name=corpus_name,
    path=path,
    display_name=display_name,
    description=description,
)
print(rag_file)

RAG-Dateien importieren

Dateien und Ordner können aus Google Drive oder Cloud Storage importiert werden.

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • RAG_CORPUS_ID: Die ID der Ressource RagCorpus.
  • GCS_URIS: Eine Liste der Cloud Storage-Standorte. Beispiel: gs://my-bucket1, gs://my-bucket2.
  • DRIVE_RESOURCE_ID: Die ID der Google Drive-Ressource. Beispiele:
    • https://drive.google.com/file/d/ABCDE
    • https://drive.google.com/corp/drive/u/0/folders/ABCDEFG
  • DRIVE_RESOURCE_TYPE: Typ der Google Drive-Ressource. Optionen:
    • RESOURCE_TYPE_FILE - Datei
    • RESOURCE_TYPE_FOLDER - Ordner
  • CHUNK_SIZE: Optional: Anzahl der Tokens, die jeder Block haben sollte.
  • CHUNK_OVERLAP: Optional: Die Anzahl der Tokens überschneiden sich zwischen Blöcken.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import

JSON-Text der Anfrage:

{
  "import_rag_files_config": {
    "gcs_source": {
      "uris": GCS_URIS
    },
    "google_drive_source": {
      "resource_ids": {
        "resource_id": DRIVE_RESOURCE_ID,
        "resource_type": DRIVE_RESOURCE_TYPE
      },
    }
  }
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import" | Select-Object -Expand Content
Eine erfolgreiche Antwort gibt die Ressource ImportRagFilesOperationMetadata zurück.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# corpus_name = "projects/{project_id}/locations/us-central1/ragCorpora/{rag_corpus_id}"
# paths = ["https://drive.google.com/file/123", "gs://my_bucket/my_files_dir"]  # Supports Google Cloud Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

response = rag.import_files(
    corpus_name=corpus_name,
    paths=paths,
    chunk_size=512,  # Optional
    chunk_overlap=100,  # Optional
)
print(f"Imported {response.imported_rag_files_count} files.")

RAG-Datei abrufen

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • RAG_CORPUS_ID: Die ID der Ressource RagCorpus.
  • RAG_FILE_ID: Die ID der Ressource RagFile.

HTTP-Methode und URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID"

PowerShell

Führen Sie folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID" | Select-Object -Expand Content
Eine erfolgreiche Antwort gibt die Ressource RagFile zurück.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# file_name = "projects/{project_id}/locations/us-central1/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

rag_file = rag.get_file(name=file_name)
print(rag_file)

RAG-Dateien auflisten

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • RAG_CORPUS_ID: Die ID der Ressource RagCorpus.
  • PAGE_SIZE: Die Standardgröße der Listenseite Sie können die Anzahl der RagFiles anpassen, die pro Seite zurückgegeben werden sollen, indem Sie den Parameter page_size aktualisieren.
  • PAGE_TOKEN: Das Standardtoken der Listenseite Wird normalerweise mit ListRagFilesResponse.next_page_token des vorherigen VertexRagDataService.ListRagFiles-Aufrufs abgerufen.

HTTP-Methode und URL:

GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN"

PowerShell

Führen Sie folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN" | Select-Object -Expand Content
Sie sollten einen erfolgreichen Statuscode (2xx) zusammen mit einer Liste von RagFiles unter dem angegebenen RAG_CORPUS_ID erhalten.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# corpus_name = "projects/{project_id}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

files = rag.list_files(corpus_name=corpus_name)
for file in files:
    print(file)

RAG-Datei löschen

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • RAG_CORPUS_ID: Die ID der Ressource RagCorpus.
  • RAG_FILE_ID: Die ID der Ressource RagFile. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}/ragFiles/{rag_file_id}.

HTTP-Methode und URL:

DELETE https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X DELETE \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID"

PowerShell

Führen Sie folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID" | Select-Object -Expand Content
Eine erfolgreiche Antwort gibt die Ressource DeleteOperationMetadata zurück.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# file_name = "projects/{project_id}/locations/us-central1/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

rag.delete_file(name=file_name)
print(f"File {file_name} deleted.")

Abrufabfrage

Wenn ein Nutzer eine Frage stellt oder einen Prompt bereitstellt, durchsucht die Abrufkomponente in RAG in ihrer Wissensdatenbank nach relevanten Informationen.

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • PROJECT_ID: Ihre Projekt-ID.
  • RAG_CORPUS_RESOURCE: Name der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}.
  • VECTOR_DISTANCE_THRESHOLD: Es werden nur Kontexte mit einer Vektordistanz zurückgegeben, die kleiner als der Grenzwert ist.
  • TEXT: Der Abfragetext, um relevante Kontexte abzurufen.
  • SIMILARITY_TOP_K: Die Anzahl der Top-Kontexte, die abgerufen werden sollen.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts

JSON-Text der Anfrage:

{
 "vertex_rag_store": {
    "rag_resources": {
      "rag_corpus": "RAG_CORPUS_RESOURCE",
    },
    "vector_distance_threshold": 0.8
  },
  "query": {
   "text": "TEXT",
   "similarity_top_k": SIMILARITY_TOP_K
  }
 }

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts" | Select-Object -Expand Content
Sie sollten einen erfolgreichen Statuscode (2xx) und eine Liste der zugehörigen RagFiles erhalten.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# rag_corpus_id = "9183965540115283968" # Only one corpus is supported at this time

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=rag_corpus_id,
            # Supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="What is RAG and why it is helpful?",
    similarity_top_k=10,  # Optional
    vector_distance_threshold=0.5,  # Optional
)
print(response)

Vorhersage

Eine Vorhersage steuert die LLM-Methode, die Inhalte generiert.

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • MODEL_ID: LLM-Modell für die Inhaltsgenerierung. Beispiel: gemini-1.5-pro-001
  • GENERATION_METHOD: LLM-Methode zum Generieren von Inhalten. Optionen: generateContent, streamGenerateContent
  • INPUT_PROMPT: Der Text, der zur Inhaltsgenerierung an das LLM gesendet wird. Versuchen Sie, einen Prompt zu verwenden, der für die hochgeladenen Rap-Dateien relevant ist.
  • RAG_CORPUS_RESOURCE: Name der RagCorpus-Ressource. Format: projects/{project}/locations/{location}/ragCorpora/{rag_corpus}.
  • SIMILARITY_TOP_K: Optional: Die Anzahl der Top-Kontexte, die abgerufen werden sollen.
  • VECTOR_DISTANCE_THRESHOLD: Optional: Kontexte mit einer Vektorentfernung, die kleiner als der Grenzwert ist, werden zurückgegeben.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD

JSON-Text der Anfrage:

{
 "contents": {
  "role": "user",
  "parts": {
    "text": "INPUT_PROMPT"
  }
 },
 "tools": {
  "retrieval": {
   "disable_attribution": false,
   "vertex_rag_store": {
    "rag_resources": {
      "rag_corpus": "RAG_CORPUS_RESOURCE",
    },
    "similarity_top_k": SIMILARITY_TOP_K,
    "vector_distance_threshold": VECTOR_DISTANCE_THRESHOLD
   }
  }
 }
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$headers = @{  }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD" | Select-Object -Expand Content
Eine erfolgreiche Antwort gibt den generierten Inhalt mit Zitationen zurück.

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.


from vertexai.preview import rag
from vertexai.preview.generative_models import GenerativeModel, Tool
import vertexai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# rag_corpus_id = "9183965540115283968" # Only one corpus is supported at this time

# Initialize Vertex AI API once per session
vertexai.init(project=project_id, location="us-central1")

rag_retrieval_tool = Tool.from_retrieval(
    retrieval=rag.Retrieval(
        source=rag.VertexRagStore(
            rag_resources=[
                rag.RagResource(
                    rag_corpus=rag_corpus_id,  # Currently only 1 corpus is allowed.
                    # Supply IDs from `rag.list_files()`.
                    # rag_file_ids=["rag-file-1", "rag-file-2", ...],
                )
            ],
            similarity_top_k=3,  # Optional
            vector_distance_threshold=0.5,  # Optional
        ),
    )
)

rag_model = GenerativeModel(
    model_name="gemini-1.0-pro-002", tools=[rag_retrieval_tool]
)
response = rag_model.generate_content("Why is the sky blue?")
print(response.text)

Weitere Informationen