Chame o Gemini com a API Chat Completions
O exemplo seguinte mostra como enviar pedidos sem streaming:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \ -d '{ "model": "google/${MODEL_ID}", "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.
Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
O exemplo seguinte mostra como enviar pedidos de streaming para um modelo Gemini através da API Chat Completions:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \ -d '{ "model": "google/${MODEL_ID}", "stream": true, "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.
Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
Envie um comando e uma imagem para a API Gemini na Vertex AI
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.
Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
Chame um modelo implementado automaticamente com a API Chat Completions
O exemplo seguinte mostra como enviar pedidos sem streaming:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \ -d '{ "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.
Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
O exemplo seguinte mostra como enviar pedidos de streaming para um modelo implementado automaticamente através da API Chat Completions:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \ -d '{ "stream": true, "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.
Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
extra_body
exemplos
Pode usar o SDK ou a API REST para transmitir extra_body
.
Adicionar thought_tag_marker
{
...,
"extra_body": {
"google": {
...,
"thought_tag_marker": "..."
}
}
}
Adicione extra_body
através do SDK
client.chat.completions.create(
...,
extra_body = {
'extra_body': { 'google': { ... } }
},
)
extra_content
exemplos
Pode preencher este campo através da API REST diretamente.
extra_content
com a string content
{
"messages": [
{ "role": "...", "content": "...", "extra_content": { "google": { ... } } }
]
}
Por mensagem extra_content
{
"messages": [
{
"role": "...",
"content": [
{ "type": "...", ..., "extra_content": { "google": { ... } } }
]
}
}
Chamada por ferramenta extra_content
{
"messages": [
{
"role": "...",
"tool_calls": [
{
...,
"extra_content": { "google": { ... } }
}
]
}
]
}
Exemplos de pedidos de curl
Pode usar estes pedidos curl
diretamente, em vez de passar pelo SDK.
Use o thinking_config
com a extra_body
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/endpoints/openapi/chat/completions \
-d '{ \
"model": "google/gemini-2.5-flash-preview-04-17", \
"messages": [ \
{ "role": "user", \
"content": [ \
{ "type": "text", \
"text": "Are there any primes number of the form n*ceil(log(n))" \
}] }], \
"extra_body": { \
"google": { \
"thinking_config": { \
"include_thoughts": true, "thinking_budget": 10000 \
}, \
"thought_tag_marker": "think" } }, \
"stream": true }'
Pedidos multimodais
A API Chat Completions suporta uma variedade de entradas multimodais, incluindo áudio e vídeo.
Use image_url
para transmitir dados de imagens
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT}/locations/us-central1/endpoints/openapi/chat/completions \
-d '{ \
"model": "google/gemini-2.0-flash-001", \
"messages": [{ "role": "user", "content": [ \
{ "type": "text", "text": "Describe this image" }, \
{ "type": "image_url", "image_url": "gs://cloud-samples-data/generative-ai/image/scones.jpg" }] }] }'
Use input_audio
para transmitir dados de áudio
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT}/locations/us-central1/endpoints/openapi/chat/completions \
-d '{ \
"model": "google/gemini-2.0-flash-001", \
"messages": [ \
{ "role": "user", \
"content": [ \
{ "type": "text", "text": "Describe this: " }, \
{ "type": "input_audio", "input_audio": { \
"format": "audio/mp3", \
"data": "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }] }] }'
Resultados estruturados
Pode usar o parâmetro response_format
para obter resultados estruturados.
Exemplo de utilização do SDK
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI()
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="google/gemini-2.5-flash-preview-04-17",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
O que se segue?
- Veja exemplos de chamadas à API Inference com a sintaxe compatível com a OpenAI.
- Veja exemplos de chamadas da API Function Calling com sintaxe compatível com a OpenAI.
- Saiba mais sobre a API Gemini.
- Saiba mais sobre a migração do Azure OpenAI para a API Gemini.