Exemplos

Chame o Gemini com a API Chat Completions

O exemplo seguinte mostra como enviar pedidos sem streaming:

REST

  curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \
  -d '{
    "model": "google/${MODEL_ID}",
    "messages": [{
      "role": "user",
      "content": "Write a story about a magic backpack."
    }]
  }'
  

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from google.auth import default
import google.auth.transport.requests

import openai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# location = "us-central1"

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

response = client.chat.completions.create(
    model="google/gemini-2.0-flash-001",
    messages=[{"role": "user", "content": "Why is the sky blue?"}],
)

print(response)

O exemplo seguinte mostra como enviar pedidos de streaming para um modelo Gemini através da API Chat Completions:

REST

  curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \
  -d '{
    "model": "google/${MODEL_ID}",
    "stream": true,
    "messages": [{
      "role": "user",
      "content": "Write a story about a magic backpack."
    }]
  }'
  

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from google.auth import default
import google.auth.transport.requests

import openai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# location = "us-central1"

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

response = client.chat.completions.create(
    model="google/gemini-2.0-flash-001",
    messages=[{"role": "user", "content": "Why is the sky blue?"}],
    stream=True,
)
for chunk in response:
    print(chunk)

Envie um comando e uma imagem para a API Gemini na Vertex AI

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.


from google.auth import default
import google.auth.transport.requests

import openai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# location = "us-central1"

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

response = client.chat.completions.create(
    model="google/gemini-2.0-flash-001",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Describe the following image:"},
                {
                    "type": "image_url",
                    "image_url": "gs://cloud-samples-data/generative-ai/image/scones.jpg",
                },
            ],
        }
    ],
)

print(response)

Chame um modelo implementado automaticamente com a API Chat Completions

O exemplo seguinte mostra como enviar pedidos sem streaming:

REST

  curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
  https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \
  -d '{
    "messages": [{
      "role": "user",
      "content": "Write a story about a magic backpack."
    }]
  }'

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from google.auth import default
import google.auth.transport.requests

import openai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# location = "us-central1"
# model_id = "gemma-2-9b-it"
# endpoint_id = "YOUR_ENDPOINT_ID"

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/{endpoint_id}",
    api_key=credentials.token,
)

response = client.chat.completions.create(
    model=model_id,
    messages=[{"role": "user", "content": "Why is the sky blue?"}],
)
print(response)

O exemplo seguinte mostra como enviar pedidos de streaming para um modelo implementado automaticamente através da API Chat Completions:

REST

    curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
    https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \
    -d '{
      "stream": true,
      "messages": [{
        "role": "user",
        "content": "Write a story about a magic backpack."
      }]
    }'
  

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from google.auth import default
import google.auth.transport.requests

import openai

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
# location = "us-central1"
# model_id = "gemma-2-9b-it"
# endpoint_id = "YOUR_ENDPOINT_ID"

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/{endpoint_id}",
    api_key=credentials.token,
)

response = client.chat.completions.create(
    model=model_id,
    messages=[{"role": "user", "content": "Why is the sky blue?"}],
    stream=True,
)
for chunk in response:
    print(chunk)

extra_body exemplos

Pode usar o SDK ou a API REST para transmitir extra_body.

Adicionar thought_tag_marker

{
  ...,
  "extra_body": {
     "google": {
       ...,
       "thought_tag_marker": "..."
     }
   }
}

Adicione extra_body através do SDK

client.chat.completions.create(
  ...,
  extra_body = {
    'extra_body': { 'google': { ... } }
  },
)

extra_content exemplos

Pode preencher este campo através da API REST diretamente.

extra_content com a string content

{
  "messages": [
    { "role": "...", "content": "...", "extra_content": { "google": { ... } } }
  ]
}

Por mensagem extra_content

{
  "messages": [
    {
      "role": "...",
      "content": [
        { "type": "...", ..., "extra_content": { "google": { ... } } }
      ]
    }
}

Chamada por ferramenta extra_content

{
  "messages": [
    {
      "role": "...",
      "tool_calls": [
        {
          ...,
          "extra_content": { "google": { ... } }
        }
      ]
    }
  ]
}

Exemplos de pedidos de curl

Pode usar estes pedidos curl diretamente, em vez de passar pelo SDK.

Use o thinking_config com a extra_body

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/endpoints/openapi/chat/completions \
  -d '{ \
    "model": "google/gemini-2.5-flash-preview-04-17", \
    "messages": [ \
      { "role": "user", \
      "content": [ \
        { "type": "text", \
          "text": "Are there any primes number of the form n*ceil(log(n))" \
        }] }], \
    "extra_body": { \
      "google": { \
          "thinking_config": { \
          "include_thoughts": true, "thinking_budget": 10000 \
        }, \
        "thought_tag_marker": "think" } }, \
    "stream": true }'

Pedidos multimodais

A API Chat Completions suporta uma variedade de entradas multimodais, incluindo áudio e vídeo.

Use image_url para transmitir dados de imagens

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT}/locations/us-central1/endpoints/openapi/chat/completions \
  -d '{ \
    "model": "google/gemini-2.0-flash-001", \
    "messages": [{ "role": "user", "content": [ \
      { "type": "text", "text": "Describe this image" }, \
      { "type": "image_url", "image_url": "gs://cloud-samples-data/generative-ai/image/scones.jpg" }] }] }'

Use input_audio para transmitir dados de áudio

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT}/locations/us-central1/endpoints/openapi/chat/completions \
  -d '{ \
    "model": "google/gemini-2.0-flash-001", \
    "messages": [ \
      { "role": "user", \
        "content": [ \
          { "type": "text", "text": "Describe this: " }, \
          { "type": "input_audio", "input_audio": { \
            "format": "audio/mp3", \
            "data": "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }] }] }'

Resultados estruturados

Pode usar o parâmetro response_format para obter resultados estruturados.

Exemplo de utilização do SDK

from pydantic import BaseModel
from openai import OpenAI

client = OpenAI()

class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

completion = client.beta.chat.completions.parse(
    model="google/gemini-2.5-flash-preview-04-17",
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
    ],
    response_format=CalendarEvent,
)

print(completion.choices[0].message.parsed)

O que se segue?