Crie comandos do MedLM

Os modelos MedLM disponíveis, MedLM-medium e MedLM-large, são modelos fundamentais para responder a perguntas médicas e gerar resumos. Pode aceder aos modelos através da API MedLM do Vertex AI. Esta página dá-lhe uma vista geral dos modelos MedLM disponíveis, das APIs que usa para interagir com os modelos e das formas de personalizar os respetivos comportamentos.

Antes de começar

  • Consulte a vista geral dos modelos MedLM para ver informações, incluindo responsabilidades dos clientes, informações regulamentares e práticas recomendadas de IA responsável.
  • Consulte a ficha do modelo MedLM para ver detalhes do modelo, como a utilização pretendida do MedLM, a vista geral dos dados e as informações de segurança. Clique no seguinte link para transferir uma versão PDF da ficha do modelo MedLM:

    Transfira o cartão do modelo MedLM

Design de comandos

Para interagir com os modelos MedLM, envia instruções de linguagem natural, também denominadas comandos, que indicam ao modelo o que quer que este gere. No entanto, por vezes, os GMLs podem comportar-se de formas imprevisíveis. O design de comandos é um processo iterativo de tentativa e erro que requer tempo e prática para se tornar proficiente. Para saber mais sobre estratégias gerais de conceção de comandos, consulte o artigo Introdução à conceção de comandos. Para ver orientações de design de comandos específicos de tarefas para texto, consulte o artigo Vista geral das estratégias de comandos.

Exemplos de utilização

  • Resumo: crie uma versão mais curta de um documento que incorpore informações pertinentes do texto original. Por exemplo, pode querer resumir uma nota médica que descreve uma consulta em regime ambulatório e extrair informações relevantes para pontos de dados específicos.
  • Respostas a perguntas: fornecer respostas a perguntas em texto. Por exemplo, pode querer fazer uma pergunta médica geral para gerar respostas a partir da base de conhecimentos.

Modelos suportados

  • medlm-medium
  • medlm-large

Começar

Os exemplos seguintes mostram como começar a usar a API MedLM com as seguintes interfaces:

  • A API REST da Vertex AI
  • SDK Vertex AI para Python
  • Vertex AI Studio

REST

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • PROJECT_ID: o seu ID do projeto.
  • MEDLM_MODEL: o modelo MedLM, medlm-medium ou medlm-large.

Método HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict

Corpo JSON do pedido:

{
  "instances": [
    {
      "content": "Question: What causes you to get ringworm?"
    }
  ],
  "parameters": {
    "temperature": 0,
    "maxOutputTokens": 256,
    "topK": 40,
    "topP": 0.95
  }
}

Para enviar o seu pedido, escolha uma destas opções:

curl

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

cat > request.json << 'EOF'
{
  "instances": [
    {
      "content": "Question: What causes you to get ringworm?"
    }
  ],
  "parameters": {
    "temperature": 0,
    "maxOutputTokens": 256,
    "topK": 40,
    "topP": 0.95
  }
}
EOF

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"

PowerShell

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

@'
{
  "instances": [
    {
      "content": "Question: What causes you to get ringworm?"
    }
  ],
  "parameters": {
    "temperature": 0,
    "maxOutputTokens": 256,
    "topK": 40,
    "topP": 0.95
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
 

Python (Colaboratory)

Execute o seguinte código Python no Colaboratory.

!pip install google-cloud-aiplatform

# The following restarts the runtime.
import IPython

app = IPython.Application.instance()
# Note that this will result in a pop-up telling you that the session has
# crashed for an unknown reason. This can be safely ignored and you can continue
# with the following cells after getting this message.
app.kernel.do_shutdown(True)

Execute o seguinte código no seu bloco de notas do Colaboratory. Introduza o seu Google Cloud ID do projeto onde indicado. Para encontrar o ID do projeto, consulte o artigo Localize o ID do projeto.

from google.colab import auth as google_auth
import vertexai
from vertexai.preview.language_models import TextGenerationModel

google_auth.authenticate_user()

# TODO: Replace with project ID from Cloud Console
# (https://support.google.com/googleapi/answer/7014113)
PROJECT_ID = 'my-project'

# MedLM models are only available in us-central1.
vertexai.init(project=PROJECT_ID, location='us-central1')

parameters = {
    "candidate_count": 1,
    "max_output_tokens": 256,
    "temperature": 0.0,
    "top_k": 40,
    "top_p": 0.80,
}

model_instance = TextGenerationModel.from_pretrained("medlm-medium")
response = model_instance.predict(
    "Question: What causes you to get ringworm?",
    **parameters
)

print(f"Response from Model: {response.text}")

Vertex AI Studio

Use o Vertex AI Studio para criar, testar e personalizar os seus comandos enviados para a API MedLM. Antes de usar o Vertex AI Studio para o MedLM, consulte o artigo Envie comandos de texto para o Gemini através do Vertex AI Studio para ver os pré-requisitos.

Para testar um comando do MedLM com o Vertex AI Studio na Google Cloud consola, faça o seguinte:

  1. Na secção Vertex AI da Google Cloud consola, aceda à página do Vertex AI Studio.

    Aceder ao Vertex AI Studio

  2. Clique em Começar.
  3. Clique em Criar comando.
  4. No menu Modelo, selecione MedLM-Medium ou MedLM-Large.
  5. No campo Comando, introduza o seu comando.
  6. (Opcional) Pode ajustar os valores de Temperatura e Limite de tokens para experimentar como afetam a resposta. Recomendamos que use os valores predefinidos. Se não tiver a certeza dos valores a usar, use os valores predefinidos.
  7. Clique em Enviar para gerar uma resposta.
  8. (Opcional) Para guardar um comando, clique em Guardar.
  9. (Opcional) Para ver o código Python ou um comando curl para o seu comando, clique em Obter código.

Comandos de resposta a perguntas

As secções seguintes contêm exemplos de comandos de resposta a perguntas. Cada comando de exemplo inclui o modelo e os valores dos parâmetros recomendados.

Respostas a perguntas de formato longo

Os seguintes exemplos mostram como a API MedLM responde a uma pergunta médica de formato longo formulada como uma consulta.

REST

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • PROJECT_ID: o seu ID do projeto.
  • MEDLM_MODEL: o modelo MedLM, medlm-medium ou medlm-large.

Método HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict

Corpo JSON do pedido:

{
  "instances": [
    {
      "content": "Question: What causes you to get ringworm?"
    }
  ],
  "parameters": {
    "temperature": 0,
    "maxOutputTokens": 256,
    "topK": 40,
    "topP": 0.95
  }
}

Para enviar o seu pedido, escolha uma destas opções:

curl

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

cat > request.json << 'EOF'
{
  "instances": [
    {
      "content": "Question: What causes you to get ringworm?"
    }
  ],
  "parameters": {
    "temperature": 0,
    "maxOutputTokens": 256,
    "topK": 40,
    "topP": 0.95
  }
}
EOF

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"

PowerShell

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

@'
{
  "instances": [
    {
      "content": "Question: What causes you to get ringworm?"
    }
  ],
  "parameters": {
    "temperature": 0,
    "maxOutputTokens": 256,
    "topK": 40,
    "topP": 0.95
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
 

Respostas a perguntas de escolha múltipla

Os exemplos seguintes mostram como a API MedLM responde a uma pergunta médica de escolha múltipla. O comando é o seguinte:

Instructions: This text contains multiple-choice questions about medical knowledge. Solve each question step-by-step, starting by summarizing the available information. Select a single option from the four choices provided as the final answer.

Question 1: Which medication causes the maximum increase in prolactin level?
(A) Risperidone
(B) Clozapine
(C) Olanzapine
(D) Aripiprazole

Explanation: To solve this question, let's refer to authoritative sources. Clozapine generally does not elevate prolactin levels. Atypicals like olanzapine and aripiprazole cause little to no elevation. Risperidone, on the other hand, is known to result in a sustained elevated prolactin level. Therefore, risperidone is likely to cause the maximum increase in prolactin level.

Answer: (A)

Question 2: What is the recommended age for routine screening mammography?
(A) 20 years
(B) 30 years
(C) 40 years
(D) 50 years

Explanation: The age of routine screening may vary depending on the country. In the United States, according to the American Cancer Society, it is recommended to start routine screening mammography at 40 years of age. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years.

Answer: (C)

Question 3: A 65-year-old male experiences severe back pain and paralysis in his left lower limb. Imaging studies show compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely causing this compression?
(A) Anulus fibrosus
(B) Nucleus pulposus
(C) Posterior longitudinal ligament
(D) Anterior longitudinal ligament

Explanation: This man's symptoms and imaging findings are consistent with a herniated intervertebral disk. The soft, gelatinous "nucleus pulposus" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, which should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus.

Answer: (B)

Question 4: Which cells in the lungs are also known as APUD cells?
(A) Dendritic cells
(B) Type I pneumocytes
(C) Type II pneumocytes
(D) Neuroendocrine cells

Explanation: Neuroendocrine cells, also known as Kultschitsky-type cells, Feyrter cells, and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands.

Answer: (D)

Question 5: Which microorganism indicates remote contamination of water?
(A) Streptococci
(B) Staphylococci
(C) Clostridium perfringens
(D) Vibrio

Explanation: The presence of Clostridium perfringens in water indicates remote contamination because it is a spore-forming bacterium that can survive in the environment for extended periods of time.

Answer: (C)

REST

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • PROJECT_ID: o seu ID do projeto.
  • MEDLM_MODEL: o modelo MedLM, medlm-medium ou medlm-large.

Método HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict

Corpo JSON do pedido:

{
  "instances": [
    {
      "content": "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a step-by-step fashion, starting by summarizing the available information. Output a single option from the four options as the final answer. \n \nQuestion: Maximum increase in prolactin level is caused by: \n(A) Risperidone (B) Clozapine (C) Olanzapine (D) Aripiprazole \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Clozapine generally does not raise prolactin levels. Atypicals such as olanzapine and aripiprazole cause small if no elevation. Risperidone is known to result in a sustained elevated prolactin level. Therefore risperidone is likely to cause the maximum increase in prolactin level. \nAnswer: (A) \n \nQuestion: What is the age of routine screening mammography? \n(A) 20 years (B) 30 years (C) 40 years (D) 50 years \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. The age of routine screening depends on the country you are interested in and varies widely. For the US, it is 40 years of age according to the American Cancer Society. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years. \nAnswer: (C) \n \nQuestion: A 65-year-old male complains of severe back pain and inability to move his left lower limb. Radiographic studies demonstrate the compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely responsible for this space-occupying lesion? \n(A) Anulus fibrosus (B) Nucleus pulposus (C) Posterior longitudinal ligament (D) Anterior longitudinal ligament \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. This man describes a herniated invertebral disk through a tear in the surrounding annulus fibrosus. The soft, gelatinous \"nucleus pulposus\" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, and should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus. \nAnswer: (B) \n \nQuestion: Neuroendocrine cells in the lungs are: \n(A) Dendritic cells (B) Type I pneumocytes (C) Type II pneumocytes (D) APUD cells \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Neuroendocrine cells, which are also known as Kultschitsky-type cells, Feyrter cells and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands. \nAnswer: (D) \n \nQuestion: Presence of it indicates remote contamination of water \n(A) Streptococci (B) Staphalococci (C) Clastridium pertringes (D) Nibrio \n"
    }
  ],
  "parameters": {
    "temperature": 0.2,
    "maxOutputTokens": 256
  }
}

Para enviar o seu pedido, escolha uma destas opções:

curl

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

cat > request.json << 'EOF'
{
  "instances": [
    {
      "content": "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a step-by-step fashion, starting by summarizing the available information. Output a single option from the four options as the final answer. \n \nQuestion: Maximum increase in prolactin level is caused by: \n(A) Risperidone (B) Clozapine (C) Olanzapine (D) Aripiprazole \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Clozapine generally does not raise prolactin levels. Atypicals such as olanzapine and aripiprazole cause small if no elevation. Risperidone is known to result in a sustained elevated prolactin level. Therefore risperidone is likely to cause the maximum increase in prolactin level. \nAnswer: (A) \n \nQuestion: What is the age of routine screening mammography? \n(A) 20 years (B) 30 years (C) 40 years (D) 50 years \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. The age of routine screening depends on the country you are interested in and varies widely. For the US, it is 40 years of age according to the American Cancer Society. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years. \nAnswer: (C) \n \nQuestion: A 65-year-old male complains of severe back pain and inability to move his left lower limb. Radiographic studies demonstrate the compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely responsible for this space-occupying lesion? \n(A) Anulus fibrosus (B) Nucleus pulposus (C) Posterior longitudinal ligament (D) Anterior longitudinal ligament \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. This man describes a herniated invertebral disk through a tear in the surrounding annulus fibrosus. The soft, gelatinous \"nucleus pulposus\" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, and should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus. \nAnswer: (B) \n \nQuestion: Neuroendocrine cells in the lungs are: \n(A) Dendritic cells (B) Type I pneumocytes (C) Type II pneumocytes (D) APUD cells \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Neuroendocrine cells, which are also known as Kultschitsky-type cells, Feyrter cells and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands. \nAnswer: (D) \n \nQuestion: Presence of it indicates remote contamination of water \n(A) Streptococci (B) Staphalococci (C) Clastridium pertringes (D) Nibrio \n"
    }
  ],
  "parameters": {
    "temperature": 0.2,
    "maxOutputTokens": 256
  }
}
EOF

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"

PowerShell

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

@'
{
  "instances": [
    {
      "content": "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a step-by-step fashion, starting by summarizing the available information. Output a single option from the four options as the final answer. \n \nQuestion: Maximum increase in prolactin level is caused by: \n(A) Risperidone (B) Clozapine (C) Olanzapine (D) Aripiprazole \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Clozapine generally does not raise prolactin levels. Atypicals such as olanzapine and aripiprazole cause small if no elevation. Risperidone is known to result in a sustained elevated prolactin level. Therefore risperidone is likely to cause the maximum increase in prolactin level. \nAnswer: (A) \n \nQuestion: What is the age of routine screening mammography? \n(A) 20 years (B) 30 years (C) 40 years (D) 50 years \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. The age of routine screening depends on the country you are interested in and varies widely. For the US, it is 40 years of age according to the American Cancer Society. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years. \nAnswer: (C) \n \nQuestion: A 65-year-old male complains of severe back pain and inability to move his left lower limb. Radiographic studies demonstrate the compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely responsible for this space-occupying lesion? \n(A) Anulus fibrosus (B) Nucleus pulposus (C) Posterior longitudinal ligament (D) Anterior longitudinal ligament \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. This man describes a herniated invertebral disk through a tear in the surrounding annulus fibrosus. The soft, gelatinous \"nucleus pulposus\" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, and should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus. \nAnswer: (B) \n \nQuestion: Neuroendocrine cells in the lungs are: \n(A) Dendritic cells (B) Type I pneumocytes (C) Type II pneumocytes (D) APUD cells \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Neuroendocrine cells, which are also known as Kultschitsky-type cells, Feyrter cells and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands. \nAnswer: (D) \n \nQuestion: Presence of it indicates remote contamination of water \n(A) Streptococci (B) Staphalococci (C) Clastridium pertringes (D) Nibrio \n"
    }
  ],
  "parameters": {
    "temperature": 0.2,
    "maxOutputTokens": 256
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
 

Comandos de resumo

As secções seguintes contêm exemplos de comandos de resumo. Cada comando de exemplo inclui o modelo e os valores dos parâmetros recomendados.

Redija um resumo pós-visita

Os exemplos seguintes mostram como gerar um resumo após a visita para um paciente com base numa nota de visita em regime ambulatório. O comando contém o seguinte:

  • Um preâmbulo que contém a instrução do modelo.
  • Uma descrição de cada campo a extrair para o resumo.

O formato do resumo após a visita baseia-se em Sieferd et al. (2019) e nas recomendações da UK Academy of Medical Royal Colleges. Opcionalmente, pode adicionar exemplos de poucos disparos antes das notas e dos resumos.

O comando é o seguinte:

Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields:

- Patient name/age/gender: This should summarize the patient's name, age and gender. It should use the format: "[Patient name], [age] year old [gender]". If the name is not mentioned in the note, please answer "Not available".
- Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer "Not available".
- I came in today for: This field should indicate the chief complaint or complaints that caused the visit.
- New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer "No new diagnosis".
- Other health issues I have are: This field should indicate any pre-existing health issues identified in notes.
- Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient's experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient's point of view, using phrases like "my visit", "my condition".
- My important numbers: This field should provide the results of any measurements relevant to the  visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note.

- Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer "no changes".
- Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please  "Not specified".
- My next steps are: This field should document the patient's next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each.
- I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write "Not specified".
- Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field.
For each field, write at a sixth-grade reading level and avoid using abbreviations or jargon.

Output the summary in the following format:
- Patient name/age/gender:
- Today I was seen by:
- I came in today for:
- New health issues identified today are:
- Other health issues I have are:
- Today we accomplished:
- My important numbers:
- Changes to my medications are:
- Other medications I have are:
- My next steps are:
- I should seek immediate medical attention if:
- Other comments from my provider:

Note:

INPUT_NOTE

After Visit Summary:

REST

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • PROJECT_ID: o seu ID do projeto.
  • MEDLM_MODEL: o modelo MedLM, medlm-medium ou medlm-large.
  • INPUT_NOTE: a nota de entrada a resumir.

Método HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict

Corpo JSON do pedido:

{
  "instances": [
    {
      "content": "Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields:\n\n- Patient name/age/gender: This should summarize the patient\u2019s name, age and gender. It should use the format: '[Patient name], [age] year old [gender]'. If the name is not mentioned in the note, please answer \"Not available\".\n- Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer 'Not available'.\n- I came in today for: This field should indicate the chief complaint or complaints that caused the visit.\n- New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer 'No new diagnosis'.\n- Other health issues I have are: This field should indicate any pre-existing health issues identified in notes.\n- Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient\u2019s experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient\u2019s point of view, using phrases like 'my visit', 'my condition'.\n- My important numbers: This field should provide the results of any measurements relevant to the  visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note.\n\n\n\n\n\n\n\n\n- Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer 'no changes'.\n- Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please  'Not specified'.\n- My next steps are: This field should document the patient\u2019s next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each.\n- I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write 'Not specified'.\n- Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field.\nFor each field, write at a sixth-grade reading level and avoid using abbreviations or jargon.\n\nOutput the summary in the following format:\n- Patient name/age/gender:\n- Today I was seen by:\n- I came in today for:\n- New health issues identified today are:\n- Other health issues I have are:\n- Today we accomplished:\n- My important numbers:\n- Changes to my medications are:\n- Other medications I have are:\n- My next steps are:\n- I should seek immediate medical attention if:\n- Other comments from my provider:\n\n Note:\n\n INPUT_NOTE \n\nAfter Visit Summary:"
    }
  ],
  "parameters": {
    "candidate_count": 1,
    "temperature": 0,
    "maxOutputTokens": 1024,
    "topK": 40,
    "topP": 0.80
  }
}

Para enviar o seu pedido, escolha uma destas opções:

curl

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

cat > request.json << 'EOF'
{
  "instances": [
    {
      "content": "Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields:\n\n- Patient name/age/gender: This should summarize the patient\u2019s name, age and gender. It should use the format: '[Patient name], [age] year old [gender]'. If the name is not mentioned in the note, please answer \"Not available\".\n- Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer 'Not available'.\n- I came in today for: This field should indicate the chief complaint or complaints that caused the visit.\n- New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer 'No new diagnosis'.\n- Other health issues I have are: This field should indicate any pre-existing health issues identified in notes.\n- Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient\u2019s experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient\u2019s point of view, using phrases like 'my visit', 'my condition'.\n- My important numbers: This field should provide the results of any measurements relevant to the  visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note.\n\n\n\n\n\n\n\n\n- Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer 'no changes'.\n- Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please  'Not specified'.\n- My next steps are: This field should document the patient\u2019s next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each.\n- I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write 'Not specified'.\n- Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field.\nFor each field, write at a sixth-grade reading level and avoid using abbreviations or jargon.\n\nOutput the summary in the following format:\n- Patient name/age/gender:\n- Today I was seen by:\n- I came in today for:\n- New health issues identified today are:\n- Other health issues I have are:\n- Today we accomplished:\n- My important numbers:\n- Changes to my medications are:\n- Other medications I have are:\n- My next steps are:\n- I should seek immediate medical attention if:\n- Other comments from my provider:\n\n Note:\n\n INPUT_NOTE \n\nAfter Visit Summary:"
    }
  ],
  "parameters": {
    "candidate_count": 1,
    "temperature": 0,
    "maxOutputTokens": 1024,
    "topK": 40,
    "topP": 0.80
  }
}
EOF

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"

PowerShell

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

@'
{
  "instances": [
    {
      "content": "Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields:\n\n- Patient name/age/gender: This should summarize the patient\u2019s name, age and gender. It should use the format: '[Patient name], [age] year old [gender]'. If the name is not mentioned in the note, please answer \"Not available\".\n- Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer 'Not available'.\n- I came in today for: This field should indicate the chief complaint or complaints that caused the visit.\n- New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer 'No new diagnosis'.\n- Other health issues I have are: This field should indicate any pre-existing health issues identified in notes.\n- Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient\u2019s experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient\u2019s point of view, using phrases like 'my visit', 'my condition'.\n- My important numbers: This field should provide the results of any measurements relevant to the  visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note.\n\n\n\n\n\n\n\n\n- Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer 'no changes'.\n- Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please  'Not specified'.\n- My next steps are: This field should document the patient\u2019s next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each.\n- I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write 'Not specified'.\n- Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field.\nFor each field, write at a sixth-grade reading level and avoid using abbreviations or jargon.\n\nOutput the summary in the following format:\n- Patient name/age/gender:\n- Today I was seen by:\n- I came in today for:\n- New health issues identified today are:\n- Other health issues I have are:\n- Today we accomplished:\n- My important numbers:\n- Changes to my medications are:\n- Other medications I have are:\n- My next steps are:\n- I should seek immediate medical attention if:\n- Other comments from my provider:\n\n Note:\n\n INPUT_NOTE \n\nAfter Visit Summary:"
    }
  ],
  "parameters": {
    "candidate_count": 1,
    "temperature": 0,
    "maxOutputTokens": 1024,
    "topK": 40,
    "topP": 0.80
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
 

Componha uma nota de histórico e exame físico (H&P) a partir de uma transcrição

Os exemplos seguintes mostram como acelerar a documentação clínica através do envio de um pedido à API MedLM para escrever uma nota de histórico e exame físico (H&P) a partir da transcrição de uma conversa médica entre um profissional de saúde e um paciente.

A nota de H&P é uma nota clínica abrangente que documenta o histórico médico do paciente e o exame físico realizado pelo prestador. O MedLM pode recolher grande parte das informações clínicas necessárias para criar um rascunho de uma nota a partir da conversa entre o prestador e o paciente durante a consulta médica.

Suponha que tem uma transcrição de uma conversa médica no seguinte formato. Os interlocutores na conversa são conhecidos:

PROVIDER: Welcome! How can we help you this morning?
PATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.
PROVIDER: I am sorry to hear that. Can you tell me how it happened?
PATIENT: I was playing soccer last night and I think I trip and twisted my ankle.
PROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?
PATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.

REST

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • PROJECT_ID: o seu ID do projeto.
  • MEDLM_MODEL: o modelo MedLM, medlm-medium ou medlm-large.

Método HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict

Corpo JSON do pedido:

{
  "instances": [
    {
      "content": "You are charting a patient record. Read through the provided transcript of a conversation between a healthcare provider and a patient and write a history and physical examination note.\n\nTranscript: \n PROVIDER: Welcome! How can we help you this morning?\nPATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.\nPROVIDER: I am sorry to hear that. Can you tell me how it happened?\nPATIENT: I was playing soccer last night and I think I trip and twisted my ankle.\nPROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?\nPATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.\n\nHistory and Physical Note:"
    }
  ],
  "parameters": {
    "candidate_count": 1,
    "temperature": 0,
    "maxOutputTokens": 1024,
    "topK": 40,
    "topP": 0.80
  }
}

Para enviar o seu pedido, escolha uma destas opções:

curl

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

cat > request.json << 'EOF'
{
  "instances": [
    {
      "content": "You are charting a patient record. Read through the provided transcript of a conversation between a healthcare provider and a patient and write a history and physical examination note.\n\nTranscript: \n PROVIDER: Welcome! How can we help you this morning?\nPATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.\nPROVIDER: I am sorry to hear that. Can you tell me how it happened?\nPATIENT: I was playing soccer last night and I think I trip and twisted my ankle.\nPROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?\nPATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.\n\nHistory and Physical Note:"
    }
  ],
  "parameters": {
    "candidate_count": 1,
    "temperature": 0,
    "maxOutputTokens": 1024,
    "topK": 40,
    "topP": 0.80
  }
}

EOF

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"

PowerShell

Guarde o corpo do pedido num ficheiro denominado request.json. Execute o seguinte comando no terminal para criar ou substituir este ficheiro no diretório atual:

@'
{
  "instances": [
    {
      "content": "You are charting a patient record. Read through the provided transcript of a conversation between a healthcare provider and a patient and write a history and physical examination note.\n\nTranscript: \n PROVIDER: Welcome! How can we help you this morning?\nPATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.\nPROVIDER: I am sorry to hear that. Can you tell me how it happened?\nPATIENT: I was playing soccer last night and I think I trip and twisted my ankle.\nPROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?\nPATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.\n\nHistory and Physical Note:"
    }
  ],
  "parameters": {
    "candidate_count": 1,
    "temperature": 0,
    "maxOutputTokens": 1024,
    "topK": 40,
    "topP": 0.80
  }
}

'@  | Out-File -FilePath request.json -Encoding utf8

Em seguida, execute o seguinte comando para enviar o seu pedido REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
 

Python (Colaboratory)

Execute o seguinte código Python no Colaboratory.

!pip install google-cloud-aiplatform

# The following restarts the runtime.
import IPython

app = IPython.Application.instance()
# Note that this will result in a pop-up telling you that the session has
# crashed for an unknown reason. This can be safely ignored and you can continue
# with the following cells after getting this message.
app.kernel.do_shutdown(True)

Execute o seguinte código no seu bloco de notas do Colaboratory. Introduza o seu Google Cloud ID do projeto onde indicado. Para encontrar o ID do projeto, consulte o artigo Localize o ID do projeto.

Introduza a transcrição médica onde indicado.

from google.colab import auth as google_auth
import vertexai
from vertexai.preview.language_models import TextGenerationModel

google_auth.authenticate_user()

# TODO: Replace with project ID from Cloud Console
# (https://support.google.com/googleapi/answer/7014113)
PROJECT_ID = 'my-project'

# MedLM models are only available in us-central1.
vertexai.init(project=PROJECT_ID, location='us-central1')

# TODO: Replace with transcript.
transcript = """
# TODO: Replace with transcript.
"""

note_generation_prompt = f"""\
You are charting a patient record.
Read through the provided transcript of a conversation between a
healthcare provider and a patient and write a history and physical
examination note.

Transcript:
{transcript}

History and Physical note:
"""

parameters = {
    "candidate_count": 1,
    "max_output_tokens": 1024,
    "temperature": 0.0,
    "top_p": 0.80,
    "top_k": 40
}

model_instance = TextGenerationModel.from_pretrained("medlm-medium")
response = model_instance.predict(
    note_generation_prompt,
    **parameters
)
note = response.text

Tenha em conta o seguinte:

  • A nota gerada pode ter imprecisões e tem de ser revista por um médico antes de ser aprovada.
  • A nota gerada pode não seguir rigorosamente o formato ou o modelo necessário do departamento ou especialidade clínica. Destina-se a ser um ponto de partida para registar os dados do paciente.
  • A qualidade da nota gerada é limitada pela precisão da transcrição fornecida.

Implemente avaliações e mitigações focadas na equidade

O MedLM pode produzir resultados menos precisos para alguns grupos em comparação com outros, dependendo da pergunta e da respetiva formulação. O desempenho diferente dos resultados do modelo em diferentes grupos demográficos tem o potencial de exacerbar as desigualdades em saúde e perpetuar preconceitos prejudiciais. Estas imprecisões de saída não são exclusivas do MedLM e resultam frequentemente de vários fatores, como as desigualdades sociais e estruturais existentes, as conceções erradas sobre medicina, os estereótipos negativos e a falta de diversidade nos dados de preparação.

Considere implementar avaliações e mitigações focadas na equidade. Estas incluem o seguinte:

  • Avaliar o desempenho e o comportamento do modelo para os exemplos de utilização pretendidos em várias populações (como raça e etnia, estatuto socioeconómico [SES], geografia, identidade de género, orientação sexual, idade, preferência de idioma, casta, etc.).
  • Obter feedback sobre o desempenho.
  • Interagir com especialistas interdisciplinares e parceiros externos especializados na definição e abordagem dos aspetos sociais e estruturais da saúde.
  • Realizar esforços de monitorização contínua para avaliar e resolver problemas de parcialidade.

Consoante o seu exemplo de utilização, pondere aumentar o comando com instruções focadas na equidade, o que pode melhorar a qualidade dos resultados do MedLM no que diz respeito ao preconceito e à equidade.

Por exemplo, o seguinte texto, quando colocado no início de um comando, melhora a qualidade dos resultados em perguntas de medicina baseada na raça, conforme mostrado em Omiye et al. (2023):

You are a medical knowledge assistant who provides useful, complete, and
scientifically-grounded answers to queries. Your answers are unbiased and
up-to-date, and you follow the latest clinical guidelines. You are aware that
guidelines may have changed recently in order to address bias and inaccurate
information about disadvantaged groups. You are committed to providing the best
possible care to all patients, regardless of their race, gender, or
geographical location. You are always learning and growing, and you are open to
feedback. Only account for race, gender, or geographical location in your
answer if you are 100% sure it is correct and unbiased, with no possibility of
making a mistake or providing a response based on outdated guidelines.

A alteração dos comandos influencia os resultados do modelo. Por isso, recomendamos avaliações completas para garantir que outras áreas do desempenho não são afetadas.

Consulte o cartão do modelo MedLM para ver considerações adicionais sobre o desempenho do modelo.