本页介绍了如何开发和测试 Agent2Agent (A2A) 智能体。A2A 协议是一种开放标准,旨在实现 AI 智能体之间的无缝通信和协作。本指南侧重于本地工作流,可让您在部署之前定义和验证代理的功能。
核心工作流程涉及以下步骤:
定义代理组件
如需创建 A2A 智能体,您需要定义以下组件:AgentCard
、AgentExecutor
和 ADK LlmAgent
。
AgentCard
包含一个描述代理功能的元数据文档。AgentCard
就像一张名片,其他代理可以使用它来了解您的代理可以做什么。如需了解详情,请参阅代理卡片规范。AgentExecutor
包含代理的核心逻辑,并定义了代理如何处理任务。您可以在此处实现代理的行为。如需详细了解,请参阅 A2A 协议规范。- (可选)
LlmAgent
定义 ADK 代理,包括其系统指令、生成模型和工具。
定义 AgentCard
以下代码示例为货币汇率代理定义了 AgentCard
:
from a2a.types import AgentCard, AgentSkill
from vertexai.preview.reasoning_engines.templates.a2a import create_agent_card
# Define the skill for the CurrencyAgent
currency_skill = AgentSkill(
id='get_exchange_rate',
name='Get Currency Exchange Rate',
description='Retrieves the exchange rate between two currencies on a specified date.',
tags=['Finance', 'Currency', 'Exchange Rate'],
examples=[
'What is the exchange rate from USD to EUR?',
'How many Japanese Yen is 1 US dollar worth today?',
],
)
# Create the agent card using the utility function
agent_card = create_agent_card(
agent_name='Currency Exchange Agent',
description='An agent that can provide currency exchange rates',
skills=[currency_skill]
)
定义 AgentExecutor
以下代码示例定义了一个 AgentExecutor
,用于返回货币兑换汇率。它接受 CurrencyAgent
实例并初始化 ADK Runner 以执行请求。
import requests
from a2a.server.agent_execution import AgentExecutor, RequestContext
from a2a.server.events import EventQueue
from a2a.server.tasks import TaskUpdater
from a2a.types import TaskState, TextPart, UnsupportedOperationError, Part
from a2a.utils import new_agent_text_message
from a2a.utils.errors import ServerError
from google.adk import Runner
from google.adk.agents import LlmAgent
from google.adk.artifacts import InMemoryArtifactService
from google.adk.memory.in_memory_memory_service import InMemoryMemoryService
from google.adk.sessions import InMemorySessionService
from google.genai import types
class CurrencyAgentExecutorWithRunner(AgentExecutor):
"""Executor that takes an LlmAgent instance and initializes the ADK Runner internally."""
def __init__(self, agent: LlmAgent):
self.agent = agent
self.runner = None
def _init_adk(self):
if not self.runner:
self.runner = Runner(
app_name=self.agent.name,
agent=self.agent,
artifact_service=InMemoryArtifactService(),
session_service=InMemorySessionService(),
memory_service=InMemoryMemoryService(),
)
async def cancel(self, context: RequestContext, event_queue: EventQueue):
raise ServerError(error=UnsupportedOperationError())
async def execute(
self,
context: RequestContext,
event_queue: EventQueue,
) -> None:
self._init_adk() # Initialize on first execute call
if not context.message:
return
user_id = context.message.metadata.get('user_id') if context.message and context.message.metadata else 'a2a_user'
updater = TaskUpdater(event_queue, context.task_id, context.context_id)
if not context.current_task:
await updater.submit()
await updater.start_work()
query = context.get_user_input()
content = types.Content(role='user', parts=[types.Part(text=query)])
try:
session = await self.runner.session_service.get_session(
app_name=self.runner.app_name,
user_id=user_id,
session_id=context.context_id,
) or await self.runner.session_service.create_session(
app_name=self.runner.app_name,
user_id=user_id,
session_id=context.context_id,
)
final_event = None
async for event in self.runner.run_async(
session_id=session.id,
user_id=user_id,
new_message=content
):
if event.is_final_response():
final_event = event
if final_event and final_event.content and final_event.content.parts:
response_text = "".join(
part.text for part in final_event.content.parts if hasattr(part, 'text') and part.text
)
if response_text:
await updater.add_artifact(
[TextPart(text=response_text)],
name='result',
)
await updater.complete()
return
await updater.update_status(
TaskState.failed,
message=new_agent_text_message('Failed to generate a final response with text content.'),
final=True
)
except Exception as e:
await updater.update_status(
TaskState.failed,
message=new_agent_text_message(f"An error occurred: {str(e)}"),
final=True,
)
定义 LlmAgent
首先,为 LlmAgent
定义要使用的币种兑换工具:
def get_exchange_rate(
currency_from: str = "USD",
currency_to: str = "EUR",
currency_date: str = "latest",
):
"""Retrieves the exchange rate between two currencies on a specified date.
Uses the Frankfurter API (https://api.frankfurter.app/) to obtain
exchange rate data.
"""
try:
response = requests.get(
f"https://api.frankfurter.app/{currency_date}",
params={"from": currency_from, "to": currency_to},
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
然后,定义使用该工具的 ADK LlmAgent
。
my_llm_agent = LlmAgent(
model='gemini-2.0-flash',
name='currency_exchange_agent',
description='An agent that can provide currency exchange rates.',
instruction="""You are a helpful currency exchange assistant.
Use the get_exchange_rate tool to answer user questions.
If the tool returns an error, inform the user about the error.""",
tools=[get_exchange_rate],
)
创建本地代理
定义代理的组件后,创建一个使用 AgentCard
、AgentExecutor
和 LlmAgent
的 A2aAgent
类实例,以开始本地测试。
from vertexai.preview.reasoning_engines import A2aAgent
a2a_agent = A2aAgent(
agent_card=agent_card, # Assuming agent_card is defined
agent_executor_builder=lambda: CurrencyAgentExecutorWithRunner(
agent=my_llm_agent,
)
)
a2a_agent.set_up()
A2A 代理模板可帮助您创建符合 A2A 标准的服务。该服务充当封装容器,可为您抽象出转换层。
测试本地代理
汇率代理支持以下三种方法:
handle_authenticated_agent_card
on_message_send
on_get_task
测试 handle_authenticated_agent_card
以下代码会检索代理的已验证卡片,其中描述了代理的功能。
# Test the `authenticated_agent_card` endpoint.
response_get_card = await a2a_agent.handle_authenticated_agent_card(request=None, context=None)
print(response_get_card)
测试 on_message_send
以下代码模拟了客户向代理发送新消息。A2aAgent
可创建新任务并返回任务的 ID。
import json
from starlette.requests import Request
import asyncio
# 1. Define the message payload you want to send.
message_data = {
"message": {
"messageId": "local-test-message-id",
"content":[
{
"text": "What is the exchange rate from USD to EUR today?"
}
],
"role": "ROLE_USER",
},
}
# 2. Construct the request
scope = {
"type": "http",
"http_version": "1.1",
"method": "POST",
"headers": [(b"content-type", b"application/json")],
}
async def receive():
byte_data = json.dumps(message_data).encode("utf-8")
return {"type": "http.request", "body": byte_data, "more_body": False}
post_request = Request(scope, receive=receive)
# 3. Call the agent
send_message_response = await a2a_agent.on_message_send(request=post_request, context=None)
print(send_message_response)
测试 on_get_task
以下代码用于检索任务的状态和结果。输出显示任务已完成,并包含“Hello World”响应制品。
from starlette.requests import Request
import asyncio
# 1. Provide the task_id from the previous step.
# In a real application, you would store and retrieve this ID.
task_id_to_get = send_message_response['task']['id']
# 2. Define the path parameters for the request.
task_data = {"id": task_id_to_get}
# 3. Construct the starlette.requests.Request object directly.
scope = {
"type": "http",
"http_version": "1.1",
"method": "GET",
"headers": [],
"query_string": b'',
"path_params": task_data,
}
async def empty_receive():
return {"type": "http.disconnect"}
get_request = Request(scope, empty_receive)
# 4. Call the agent's handler to get the task status.
task_status_response = await a2a_agent.on_get_task(request=get_request, context=None)
print(f"Successfully retrieved status for Task ID: {task_id_to_get}")
print("\nFull task status response:")
print(task_status_response)