Transcrire des fichiers audio courts

Vous trouverez sur cette page la procédure à suivre pour transcrire un fichier audio court en texte à l'aide de la reconnaissance vocale synchrone.

La reconnaissance vocale synchrone renvoie la transcription des fichiers audio courts (de moins de 60 secondes). Si vous souhaitez traiter une requête de reconnaissance vocale pour des fichiers audio d'une durée supérieure à 60 secondes, utilisez la reconnaissance vocale asynchrone.

Le contenu audio peut être envoyé directement à Speech-to-Text à partir d'un fichier local ou celui-ci peut traiter le contenu audio stocké dans un bucket Google Cloud Storage. Pour connaître les limites relatives aux requêtes de reconnaissance vocale synchrone, consultez la page Quotas et limites.

Effectuer une reconnaissance vocale synchrone sur un fichier local

Voici un exemple d'exécution de reconnaissance vocale synchrone sur un fichier audio local :

API REST et ligne de commande

Reportez-vous au point de terminaison speech:recognize de l'API pour obtenir des informations complètes. Pour en savoir plus sur la configuration du corps de la requête, consultez la documentation de référence sur RecognitionConfig.

Le contenu audio fourni dans le corps de la requête doit être encodé en base64. Pour obtenir plus d'informations sur l'encodage du contenu audio en base64, consultez la page Encoder du contenu audio en base64. Pour en savoir plus sur le champ content, consultez la documentation sur RecognitionAudio.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LANGUAGE_CODE : code BCP-47 de la langue parlée dans votre extrait audio.
  • ENCODING : encodage du contenu audio que vous souhaitez transcrire.
  • SAMPLE_RATE_HERTZ : taux d'échantillonnage en hertz du contenu audio que vous souhaitez transcrire.
  • ENABLE_TIME_WORD_OFFSETS : activez ce champ si vous souhaitez que les décalages temporels de début et de fin de mot (horodatages) soient renvoyés.
  • INPUT_AUDIO : chaîne encodée en base64 des données audio que vous souhaitez transcrire.

Méthode HTTP et URL :

POST https://speech.googleapis.com/v1/speech:recognize

Corps JSON de la requête :

{
  "config":{
      "languageCode":"LANGUAGE_CODE",
      "encoding":ENCODING
      "sampleRateHertz":SAMPLE_RATE_HERTZ
      "enableTimeWordOffsets":ENABLE_TIME_WORD_OFFSETS
  },
  "audio":{
    "content":"INPUT_AUDIO"
  }
}

Pour envoyer votre requête, développez l'une des options suivantes :

Vous devriez recevoir une réponse JSON de ce type :

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "how old is the Brooklyn Bridge",
          "confidence": 0.98267895
        }
      ]
    }
  ]
}

gcloud

Reportez-vous à la commande recognize pour obtenir tous les détails.

Pour effectuer la reconnaissance vocale d'un fichier local, servez-vous de l'outil de ligne de commande gcloud en indiquant le chemin d'accès du fichier local à traiter.

gcloud ml speech recognize PATH-TO-LOCAL-FILE --language-code='en-US'

Si la requête aboutit, le serveur renvoie une réponse au format JSON :

{
  "results": [
    {
      "alternatives": [
        {
          "confidence": 0.9840146,
          "transcript": "how old is the Brooklyn Bridge"
        }
      ]
    }
  ]
}

Go


func recognize(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	data, err := ioutil.ReadFile(file)
	if err != nil {
		return err
	}

	// Send the contents of the audio file with the encoding and
	// and sample rate information to be transcripted.
	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 16000,
			LanguageCode:    "en-US",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Content{Content: data},
		},
	})

	// Print the results.
	for _, result := range resp.Results {
		for _, alt := range result.Alternatives {
			fmt.Fprintf(w, "\"%v\" (confidence=%3f)\n", alt.Transcript, alt.Confidence)
		}
	}
	return nil
}

Java

/*
 * Please include the following imports to run this sample.
 *
 * import com.google.cloud.speech.v1.RecognitionAudio;
 * import com.google.cloud.speech.v1.RecognitionConfig;
 * import com.google.cloud.speech.v1.RecognizeRequest;
 * import com.google.cloud.speech.v1.RecognizeResponse;
 * import com.google.cloud.speech.v1.SpeechClient;
 * import com.google.cloud.speech.v1.SpeechRecognitionAlternative;
 * import com.google.cloud.speech.v1.SpeechRecognitionResult;
 * import com.google.protobuf.ByteString;
 * import java.nio.file.Files;
 * import java.nio.file.Path;
 * import java.nio.file.Paths;
 */

public static void sampleRecognize() {
  // TODO(developer): Replace these variables before running the sample.
  String localFilePath = "resources/brooklyn_bridge.raw";
  sampleRecognize(localFilePath);
}

/**
 * Transcribe a short audio file using synchronous speech recognition
 *
 * @param localFilePath Path to local audio file, e.g. /path/audio.wav
 */
public static void sampleRecognize(String localFilePath) {
  try (SpeechClient speechClient = SpeechClient.create()) {

    // The language of the supplied audio
    String languageCode = "en-US";

    // Sample rate in Hertz of the audio data sent
    int sampleRateHertz = 16000;

    // Encoding of audio data sent. This sample sets this explicitly.
    // This field is optional for FLAC and WAV audio formats.
    RecognitionConfig.AudioEncoding encoding = RecognitionConfig.AudioEncoding.LINEAR16;
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setLanguageCode(languageCode)
            .setSampleRateHertz(sampleRateHertz)
            .setEncoding(encoding)
            .build();
    Path path = Paths.get(localFilePath);
    byte[] data = Files.readAllBytes(path);
    ByteString content = ByteString.copyFrom(data);
    RecognitionAudio audio = RecognitionAudio.newBuilder().setContent(content).build();
    RecognizeRequest request =
        RecognizeRequest.newBuilder().setConfig(config).setAudio(audio).build();
    RecognizeResponse response = speechClient.recognize(request);
    for (SpeechRecognitionResult result : response.getResultsList()) {
      // First alternative is the most probable result
      SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
      System.out.printf("Transcript: %s\n", alternative.getTranscript());
    }
  } catch (Exception exception) {
    System.err.println("Failed to create the client due to: " + exception);
  }
}

Node.js

// Imports the Google Cloud client library
const fs = require('fs');
const speech = require('@google-cloud/speech');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  sampleRateHertz: sampleRateHertz,
  languageCode: languageCode,
};
const audio = {
  content: fs.readFileSync(filename).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file
const [response] = await client.recognize(request);
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log('Transcription: ', transcription);

Python

def transcribe_file(speech_file):
    """Transcribe the given audio file."""
    from google.cloud import speech
    import io

    client = speech.SpeechClient()

    with io.open(speech_file, "rb") as audio_file:
        content = audio_file.read()

    audio = speech.RecognitionAudio(content=content)
    config = speech.RecognitionConfig(
        encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code="en-US",
    )

    response = client.recognize(config=config, audio=audio)

    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u"Transcript: {}".format(result.alternatives[0].transcript))

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration pour C# sur la page des bibliothèques clientes, puis consultez la page Documentation de référence sur Speech-to-Text pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la page Documentation de référence sur Speech-to-Text pour PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur AutoML Vision pour Ruby.

Effectuer une reconnaissance vocale synchrone sur un fichier distant

Pour plus de commodité, l'API Speech-to-Text peut effectuer une reconnaissance vocale synchrone directement sur un fichier audio situé dans Google Cloud Storage, sans qu'il soit nécessaire d'envoyer le contenu de ce fichier audio dans le corps de votre requête.

Voici un exemple d'exécution de reconnaissance vocale synchrone sur un fichier stocké dans Cloud Storage :

API REST et ligne de commande

Reportez-vous au point de terminaison speech:recognize de l'API pour obtenir des informations complètes. Pour en savoir plus sur la configuration du corps de la requête, consultez la documentation de référence sur RecognitionConfig.

Le contenu audio fourni dans le corps de la requête doit être encodé en base64. Pour obtenir plus d'informations sur l'encodage du contenu audio en base64, consultez la page Encoder du contenu audio en base64. Pour en savoir plus sur le champ content, consultez la documentation sur RecognitionAudio.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LANGUAGE_CODE : code BCP-47 de la langue parlée dans votre extrait audio.
  • ENCODING : encodage du contenu audio que vous souhaitez transcrire.
  • SAMPLE_RATE_HERTZ : taux d'échantillonnage en hertz du contenu audio que vous souhaitez transcrire.
  • ENABLE_TIME_WORD_OFFSETS : activez ce champ si vous souhaitez que les décalages temporels de début et de fin de mot (horodatages) soient renvoyés.
  • STORAGE_BUCKET : bucket Cloud Storage.
  • INPUT_AUDIO : fichier de données audio que vous souhaitez transcrire.

Méthode HTTP et URL :

POST https://speech.googleapis.com/v1/speech:recognize

Corps JSON de la requête :

{
  "config":{
      "languageCode":"LANGUAGE_CODE",
      "encoding":ENCODING
      "sampleRateHertz":SAMPLE_RATE_HERTZ
      "enableTimeWordOffsets":ENABLE_TIME_WORD_OFFSETS
  },
  "audio":{
    "uri":"gs://STORAGE_BUCKET/INPUT_AUDIO"
  }
}

Pour envoyer votre requête, développez l'une des options suivantes :

Vous devriez recevoir une réponse JSON de ce type :

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "how old is the Brooklyn Bridge",
          "confidence": 0.98267895
        }
      ]
    }
  ]
}

gcloud

Reportez-vous à la commande recognize pour obtenir tous les détails.

Pour effectuer la reconnaissance vocale d'un fichier local, servez-vous de l'outil de ligne de commande gcloud en indiquant le chemin d'accès du fichier local à traiter.

gcloud ml speech recognize 'gs://cloud-samples-tests/speech/brooklyn.flac' \
--language-code='en-US'

Si la requête aboutit, le serveur renvoie une réponse au format JSON :

{
  "results": [
    {
      "alternatives": [
        {
          "confidence": 0.9840146,
          "transcript": "how old is the Brooklyn Bridge"
        }
      ]
    }
  ]
}

Go


func recognizeGCS(w io.Writer, gcsURI string) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	// Send the request with the URI (gs://...)
	// and sample rate information to be transcripted.
	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 16000,
			LanguageCode:    "en-US",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Uri{Uri: gcsURI},
		},
	})

	// Print the results.
	for _, result := range resp.Results {
		for _, alt := range result.Alternatives {
			fmt.Fprintf(w, "\"%v\" (confidence=%3f)\n", alt.Transcript, alt.Confidence)
		}
	}
	return nil
}

Java

/*
 * Please include the following imports to run this sample.
 *
 * import com.google.cloud.speech.v1.RecognitionAudio;
 * import com.google.cloud.speech.v1.RecognitionConfig;
 * import com.google.cloud.speech.v1.RecognizeRequest;
 * import com.google.cloud.speech.v1.RecognizeResponse;
 * import com.google.cloud.speech.v1.SpeechClient;
 * import com.google.cloud.speech.v1.SpeechRecognitionAlternative;
 * import com.google.cloud.speech.v1.SpeechRecognitionResult;
 */

public static void sampleRecognize() {
  // TODO(developer): Replace these variables before running the sample.
  String storageUri = "gs://cloud-samples-data/speech/brooklyn_bridge.raw";
  sampleRecognize(storageUri);
}

/**
 * Transcribe short audio file from Cloud Storage using synchronous speech recognition
 *
 * @param storageUri URI for audio file in Cloud Storage, e.g. gs://[BUCKET]/[FILE]
 */
public static void sampleRecognize(String storageUri) {
  try (SpeechClient speechClient = SpeechClient.create()) {

    // Sample rate in Hertz of the audio data sent
    int sampleRateHertz = 16000;

    // The language of the supplied audio
    String languageCode = "en-US";

    // Encoding of audio data sent. This sample sets this explicitly.
    // This field is optional for FLAC and WAV audio formats.
    RecognitionConfig.AudioEncoding encoding = RecognitionConfig.AudioEncoding.LINEAR16;
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setSampleRateHertz(sampleRateHertz)
            .setLanguageCode(languageCode)
            .setEncoding(encoding)
            .build();
    RecognitionAudio audio = RecognitionAudio.newBuilder().setUri(storageUri).build();
    RecognizeRequest request =
        RecognizeRequest.newBuilder().setConfig(config).setAudio(audio).build();
    RecognizeResponse response = speechClient.recognize(request);
    for (SpeechRecognitionResult result : response.getResultsList()) {
      // First alternative is the most probable result
      SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
      System.out.printf("Transcript: %s\n", alternative.getTranscript());
    }
  } catch (Exception exception) {
    System.err.println("Failed to create the client due to: " + exception);
  }
}

Node.js

// Imports the Google Cloud client library
const speech = require('@google-cloud/speech');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const gcsUri = 'gs://my-bucket/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  sampleRateHertz: sampleRateHertz,
  languageCode: languageCode,
};
const audio = {
  uri: gcsUri,
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file
const [response] = await client.recognize(request);
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log('Transcription: ', transcription);

Python

def transcribe_gcs(gcs_uri):
    """Transcribes the audio file specified by the gcs_uri."""
    from google.cloud import speech

    client = speech.SpeechClient()

    audio = speech.RecognitionAudio(uri=gcs_uri)
    config = speech.RecognitionConfig(
        encoding=speech.RecognitionConfig.AudioEncoding.FLAC,
        sample_rate_hertz=16000,
        language_code="en-US",
    )

    response = client.recognize(config=config, audio=audio)

    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u"Transcript: {}".format(result.alternatives[0].transcript))

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration pour C# sur la page des bibliothèques clientes, puis consultez la page Documentation de référence sur Speech-to-Text pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la page Documentation de référence sur Speech-to-Text pour PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la page Documentation de référence sur Speech-to-Text pour Ruby.