Transcribe archivos de audio largos

En esta página, se demuestra cómo transcribir archivos de audio largos (de más de 1 minuto) a texto con el reconocimiento de voz asíncrono.

El reconocimiento de voz asíncrono inicia una operación de procesamiento de audio de larga duración. Usa el reconocimiento de voz asíncrono para reconocer audio de más de un minuto de duración. Para audio más corto, el reconocimiento de voz síncrono es más rápido y sencillo.

Puedes recuperar los resultados de la operación a través de la interfaz google.longrunning.Operations. Los resultados permanecen disponibles para su recuperación durante 5 días (120 horas). El contenido del audio se puede enviar directamente a Speech-to-Text o se puede procesar contenido de audio que ya se encuentre en Google Cloud Storage. Consulta también los límites de audio para las solicitudes de reconocimiento de voz asíncronas.

Transcribe archivos de audio largos con un archivo de Google Cloud Storage

En estos ejemplos, se usa un depósito de Cloud Storage a fin de almacenar la entrada de audio sin procesar para el proceso de transcripción de larga duración.

Protocolo

Consulta el extremo de la API de speech:longrunningrecognize para obtener los detalles completos.

Para realizar un reconocimiento de voz síncrono, haz una solicitud POST y proporciona el cuerpo de la solicitud apropiado. A continuación, se muestra un ejemplo de una solicitud POST con curl. En el ejemplo, se utiliza el token de acceso correspondiente a la configuración de una cuenta de servicio para el proyecto con el SDK de Cloud de Google Cloud. Si deseas obtener instrucciones para instalar el SDK de Cloud, configurar un proyecto con una cuenta de servicio y conseguir un token de acceso, consulta la guía de inicio rápido.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'config': {
    'language_code': 'en-US'
  },
  'audio':{
    'uri':'gs://gcs-test-data/vr.flac'
  }
}" "https://speech.googleapis.com/v1/speech:longrunningrecognize"

Consulta la documentación de referencia de RecognitionConfig y RecognitionAudio para obtener más información sobre cómo configurar el cuerpo de la solicitud.

Si la solicitud se completa correctamente, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON:

{
  "name": "7612202767953098924"
}

donde name es el nombre de la operación de larga duración creada para la solicitud.

Espera a que se complete el procesamiento. El tiempo de procesamiento varía según el audio de la fuente. En la mayoría de los casos, obtendrás resultados en la mitad de la longitud del audio de origen. Puedes obtener el estado de tu operación de larga duración si haces una solicitud GET al extremo https://speech.googleapis.com/v1/operations/. Reemplaza your-operation-name con el name recibido de tu solicitud longrunningrecognize. Puedes obtener el progreso estimado de la solicitud desde el campo progressPercent.

curl -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     "https://speech.googleapis.com/v1/operations/your-operation-name"

Si la solicitud se completa correctamente, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON:

{
  "name": "7612202767953098924",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.speech.v1.LongRunningRecognizeMetadata",
    "progressPercent": 100,
    "startTime": "2017-07-20T16:36:55.033650Z",
    "lastUpdateTime": "2017-07-20T16:37:17.158630Z"
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.speech.v1.LongRunningRecognizeResponse",
    "results": [
      {
        "alternatives": [
          {
            "transcript": "okay so what am I doing here...(etc)...",
            "confidence": 0.96096134,
          }
        ]
      },
      {
        "alternatives": [
          {
            ...
          }
        ]
      }
    ]
  }
}

Si la operación no se completó, puedes encuestar al extremo mediante la repetición de la solicitud GET hasta que la propiedad done de la respuesta sea true.

Comando de gcloud

Consulta el comando recognize-long-running para obtener todos los detalles.

Para realizar el reconocimiento de voz asíncrono, usa la herramienta de línea de comandos de gcloud, mediante el suministro de la ruta de acceso de un archivo local o una URL de Google Cloud Storage.

gcloud ml speech recognize-long-running \
    'gs://cloud-samples-tests/speech/brooklyn.flac' \
     --language-code='en-US' --async

Si la solicitud es exitosa, el servidor muestra el ID de la operación de larga duración en formato JSON.

{
  "name": OPERATION_ID
}

A continuación, puedes obtener información sobre la operación mediante la ejecución del siguiente comando.

gcloud ml speech operations describe OPERATION_ID

También puedes encuestar a la operación hasta que finalice mediante la ejecución del siguiente comando.

gcloud ml speech operations wait OPERATION_ID

Una vez que se completa la operación, esta muestra una transcripción del audio en formato JSON.

{
  "@type": "type.googleapis.com/google.cloud.speech.v1.LongRunningRecognizeResponse",
  "results": [
    {
      "alternatives": [
        {
          "confidence": 0.9840146,
          "transcript": "how old is the Brooklyn Bridge"
        }
      ]
    }
  ]
}

C#

static object AsyncRecognizeGcs(string storageUri)
{
    var speech = SpeechClient.Create();
    var longOperation = speech.LongRunningRecognize(new RecognitionConfig()
    {
        Encoding = RecognitionConfig.Types.AudioEncoding.Linear16,
        SampleRateHertz = 16000,
        LanguageCode = "en",
    }, RecognitionAudio.FromStorageUri(storageUri));
    longOperation = longOperation.PollUntilCompleted();
    var response = longOperation.Result;
    foreach (var result in response.Results)
    {
        foreach (var alternative in result.Alternatives)
        {
            Console.WriteLine($"Transcript: { alternative.Transcript}");
        }
    }
    return 0;
}

Go


func sendGCS(w io.Writer, client *speech.Client, gcsURI string) error {
	ctx := context.Background()

	// Send the contents of the audio file with the encoding and
	// and sample rate information to be transcripted.
	req := &speechpb.LongRunningRecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 16000,
			LanguageCode:    "en-US",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Uri{Uri: gcsURI},
		},
	}

	op, err := client.LongRunningRecognize(ctx, req)
	if err != nil {
		return err
	}
	resp, err := op.Wait(ctx)
	if err != nil {
		return err
	}

	// Print the results.
	for _, result := range resp.Results {
		for _, alt := range result.Alternatives {
			fmt.Fprintf(w, "\"%v\" (confidence=%3f)\n", alt.Transcript, alt.Confidence)
		}
	}
	return nil
}

Java

/**
 * Performs non-blocking speech recognition on remote FLAC file and prints the transcription.
 *
 * @param gcsUri the path to the remote LINEAR16 audio file to transcribe.
 */
public static void asyncRecognizeGcs(String gcsUri) throws Exception {
  // Instantiates a client with GOOGLE_APPLICATION_CREDENTIALS
  try (SpeechClient speech = SpeechClient.create()) {

    // Configure remote file request for FLAC
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.FLAC)
            .setLanguageCode("en-US")
            .setSampleRateHertz(16000)
            .build();
    RecognitionAudio audio = RecognitionAudio.newBuilder().setUri(gcsUri).build();

    // Use non-blocking call for getting file transcription
    OperationFuture<LongRunningRecognizeResponse, LongRunningRecognizeMetadata> response =
        speech.longRunningRecognizeAsync(config, audio);
    while (!response.isDone()) {
      System.out.println("Waiting for response...");
      Thread.sleep(10000);
    }

    List<SpeechRecognitionResult> results = response.get().getResultsList();

    for (SpeechRecognitionResult result : results) {
      // There can be several alternative transcripts for a given chunk of speech. Just use the
      // first (most likely) one here.
      SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
      System.out.printf("Transcription: %s\n", alternative.getTranscript());
    }
  }
}

Node.js

// Imports the Google Cloud client library
const speech = require('@google-cloud/speech');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const gcsUri = 'gs://my-bucket/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  sampleRateHertz: sampleRateHertz,
  languageCode: languageCode,
};

const audio = {
  uri: gcsUri,
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file. This creates a recognition job that you
// can wait for now, or get its result later.
const [operation] = await client.longRunningRecognize(request);
// Get a Promise representation of the final result of the job
const [response] = await operation.promise();
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log(`Transcription: ${transcription}`);

PHP

use Google\Cloud\Speech\V1\SpeechClient;
use Google\Cloud\Speech\V1\RecognitionAudio;
use Google\Cloud\Speech\V1\RecognitionConfig;
use Google\Cloud\Speech\V1\RecognitionConfig\AudioEncoding;

/** Uncomment and populate these variables in your code */
// $uri = 'The Cloud Storage object to transcribe (gs://your-bucket-name/your-object-name)';

// change these variables if necessary
$encoding = AudioEncoding::LINEAR16;
$sampleRateHertz = 32000;
$languageCode = 'en-US';

// set string as audio content
$audio = (new RecognitionAudio())
    ->setUri($uri);

// set config
$config = (new RecognitionConfig())
    ->setEncoding($encoding)
    ->setSampleRateHertz($sampleRateHertz)
    ->setLanguageCode($languageCode);

// create the speech client
$client = new SpeechClient();

// create the asyncronous recognize operation
$operation = $client->longRunningRecognize($config, $audio);
$operation->pollUntilComplete();

if ($operation->operationSucceeded()) {
    $response = $operation->getResult();

    // each result is for a consecutive portion of the audio. iterate
    // through them to get the transcripts for the entire audio file.
    foreach ($response->getResults() as $result) {
        $alternatives = $result->getAlternatives();
        $mostLikely = $alternatives[0];
        $transcript = $mostLikely->getTranscript();
        $confidence = $mostLikely->getConfidence();
        printf('Transcript: %s' . PHP_EOL, $transcript);
        printf('Confidence: %s' . PHP_EOL, $confidence);
    }
} else {
    print_r($operation->getError());
}

$client->close();

Python

from google.cloud import speech_v1
from google.cloud.speech_v1 import enums

def sample_long_running_recognize(storage_uri):
    """
    Transcribe long audio file from Cloud Storage using asynchronous speech
    recognition

    Args:
      storage_uri URI for audio file in Cloud Storage, e.g. gs://[BUCKET]/[FILE]
    """

    client = speech_v1.SpeechClient()

    # storage_uri = 'gs://cloud-samples-data/speech/brooklyn_bridge.raw'

    # Sample rate in Hertz of the audio data sent
    sample_rate_hertz = 16000

    # The language of the supplied audio
    language_code = "en-US"

    # Encoding of audio data sent. This sample sets this explicitly.
    # This field is optional for FLAC and WAV audio formats.
    encoding = enums.RecognitionConfig.AudioEncoding.LINEAR16
    config = {
        "sample_rate_hertz": sample_rate_hertz,
        "language_code": language_code,
        "encoding": encoding,
    }
    audio = {"uri": storage_uri}

    operation = client.long_running_recognize(config, audio)

    print(u"Waiting for operation to complete...")
    response = operation.result()

    for result in response.results:
        # First alternative is the most probable result
        alternative = result.alternatives[0]
        print(u"Transcript: {}".format(alternative.transcript))

Ruby

# storage_path = "Path to file in Cloud Storage, eg. gs://bucket/audio.raw"

require "google/cloud/speech"

speech = Google::Cloud::Speech.speech

config = { encoding:          :LINEAR16,
           sample_rate_hertz: 16_000,
           language_code:     "en-US" }
audio = { uri: storage_path }

operation = speech.long_running_recognize config: config, audio: audio

puts "Operation started"

operation.wait_until_done!

raise operation.results.message if operation.error?

results = operation.response.results

alternatives = results.first.alternatives
alternatives.each do |alternative|
  puts "Transcription: #{alternative.transcript}"
end

Transcribe archivos de audio largos con un archivo local

En estos ejemplos, se usa un archivo local a fin de almacenar la entrada de audio sin procesar para el proceso de transcripción de larga duración.

C#

static object LongRunningRecognize(string filePath)
{
    var speech = SpeechClient.Create();
    var longOperation = speech.LongRunningRecognize(new RecognitionConfig()
    {
        Encoding = RecognitionConfig.Types.AudioEncoding.Linear16,
        SampleRateHertz = 16000,
        LanguageCode = "en",
    }, RecognitionAudio.FromFile(filePath));
    longOperation = longOperation.PollUntilCompleted();
    var response = longOperation.Result;
    foreach (var result in response.Results)
    {
        foreach (var alternative in result.Alternatives)
        {
            Console.WriteLine(alternative.Transcript);
        }
    }
    return 0;
}

Go


func send(w io.Writer, client *speech.Client, filename string) error {
	ctx := context.Background()
	data, err := ioutil.ReadFile(filename)
	if err != nil {
		return err
	}

	// Send the contents of the audio file with the encoding and
	// and sample rate information to be transcripted.
	req := &speechpb.LongRunningRecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 16000,
			LanguageCode:    "en-US",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Content{Content: data},
		},
	}

	op, err := client.LongRunningRecognize(ctx, req)
	if err != nil {
		return err
	}
	resp, err := op.Wait(ctx)
	if err != nil {
		return err
	}

	// Print the results.
	for _, result := range resp.Results {
		for _, alt := range result.Alternatives {
			fmt.Fprintf(w, "\"%v\" (confidence=%3f)\n", alt.Transcript, alt.Confidence)
		}
	}
	return nil
}

Java

/**
 * Performs non-blocking speech recognition on raw PCM audio and prints the transcription. Note
 * that transcription is limited to 60 seconds audio.
 *
 * @param fileName the path to a PCM audio file to transcribe.
 */
public static void asyncRecognizeFile(String fileName) throws Exception {
  // Instantiates a client with GOOGLE_APPLICATION_CREDENTIALS
  try (SpeechClient speech = SpeechClient.create()) {

    Path path = Paths.get(fileName);
    byte[] data = Files.readAllBytes(path);
    ByteString audioBytes = ByteString.copyFrom(data);

    // Configure request with local raw PCM audio
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            .setSampleRateHertz(16000)
            .build();
    RecognitionAudio audio = RecognitionAudio.newBuilder().setContent(audioBytes).build();

    // Use non-blocking call for getting file transcription
    OperationFuture<LongRunningRecognizeResponse, LongRunningRecognizeMetadata> response =
        speech.longRunningRecognizeAsync(config, audio);

    while (!response.isDone()) {
      System.out.println("Waiting for response...");
      Thread.sleep(10000);
    }

    List<SpeechRecognitionResult> results = response.get().getResultsList();

    for (SpeechRecognitionResult result : results) {
      // There can be several alternative transcripts for a given chunk of speech. Just use the
      // first (most likely) one here.
      SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
      System.out.printf("Transcription: %s%n", alternative.getTranscript());
    }
  }
}

Node.js

// Imports the Google Cloud client library
const speech = require('@google-cloud/speech');
const fs = require('fs');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  sampleRateHertz: sampleRateHertz,
  languageCode: languageCode,
};
const audio = {
  content: fs.readFileSync(filename).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file. This creates a recognition job that you
// can wait for now, or get its result later.
const [operation] = await client.longRunningRecognize(request);

// Get a Promise representation of the final result of the job
const [response] = await operation.promise();
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log(`Transcription: ${transcription}`);

PHP

use Google\Cloud\Speech\V1\SpeechClient;
use Google\Cloud\Speech\V1\RecognitionAudio;
use Google\Cloud\Speech\V1\RecognitionConfig;
use Google\Cloud\Speech\V1\RecognitionConfig\AudioEncoding;

/** Uncomment and populate these variables in your code */
// $audioFile = 'path to an audio file';

// change these variables if necessary
$encoding = AudioEncoding::LINEAR16;
$sampleRateHertz = 32000;
$languageCode = 'en-US';

// get contents of a file into a string
$content = file_get_contents($audioFile);

// set string as audio content
$audio = (new RecognitionAudio())
    ->setContent($content);

// set config
$config = (new RecognitionConfig())
    ->setEncoding($encoding)
    ->setSampleRateHertz($sampleRateHertz)
    ->setLanguageCode($languageCode);

// create the speech client
$client = new SpeechClient();

// create the asyncronous recognize operation
$operation = $client->longRunningRecognize($config, $audio);
$operation->pollUntilComplete();

if ($operation->operationSucceeded()) {
    $response = $operation->getResult();

    // each result is for a consecutive portion of the audio. iterate
    // through them to get the transcripts for the entire audio file.
    foreach ($response->getResults() as $result) {
        $alternatives = $result->getAlternatives();
        $mostLikely = $alternatives[0];
        $transcript = $mostLikely->getTranscript();
        $confidence = $mostLikely->getConfidence();
        printf('Transcript: %s' . PHP_EOL, $transcript);
        printf('Confidence: %s' . PHP_EOL, $confidence);
    }
} else {
    print_r($operation->getError());
}

$client->close();

Python

from google.cloud import speech_v1
from google.cloud.speech_v1 import enums
import io

def sample_long_running_recognize(local_file_path):
    """
    Transcribe a long audio file using asynchronous speech recognition

    Args:
      local_file_path Path to local audio file, e.g. /path/audio.wav
    """

    client = speech_v1.SpeechClient()

    # local_file_path = 'resources/brooklyn_bridge.raw'

    # The language of the supplied audio
    language_code = "en-US"

    # Sample rate in Hertz of the audio data sent
    sample_rate_hertz = 16000

    # Encoding of audio data sent. This sample sets this explicitly.
    # This field is optional for FLAC and WAV audio formats.
    encoding = enums.RecognitionConfig.AudioEncoding.LINEAR16
    config = {
        "language_code": language_code,
        "sample_rate_hertz": sample_rate_hertz,
        "encoding": encoding,
    }
    with io.open(local_file_path, "rb") as f:
        content = f.read()
    audio = {"content": content}

    operation = client.long_running_recognize(config, audio)

    print(u"Waiting for operation to complete...")
    response = operation.result()

    for result in response.results:
        # First alternative is the most probable result
        alternative = result.alternatives[0]
        print(u"Transcript: {}".format(alternative.transcript))

Ruby

# audio_file_path = "Path to file on which to perform speech recognition"

require "google/cloud/speech"

speech = Google::Cloud::Speech.speech

audio_file = File.binread audio_file_path
config     = { encoding:          :LINEAR16,
               sample_rate_hertz: 16_000,
               language_code:     "en-US" }
audio      = { content: audio_file }

operation = speech.long_running_recognize config: config, audio: audio

puts "Operation started"

operation.wait_until_done!

raise operation.results.message if operation.error?

results = operation.response.results

alternatives = results.first.alternatives
alternatives.each do |alternative|
  puts "Transcription: #{alternative.transcript}"
end