これは、Recommendations AI、Retail Search、新しい Retail コンソールに関するドキュメントです。

よくある質問

コレクションでコンテンツを整理 必要に応じて、コンテンツの保存と分類を行います。

その他の課題がある場合や、該当する問題が以下で見つからない場合は、バグの報告または機能のリクエストをお送りください。また、cloud-recommendations-users Google グループまたは Stack Overflow ディスカッションにご参加ください。

全般

1. Retail API 用のクライアント ライブラリまたは追加のサンプルコードは用意されていますか?

はい。各ライブラリのセットアップやリファレンスに関する情報については、こちらの Retail API のクライアント ライブラリ ガイドをご覧ください。

未処理の REST 呼び出しの代わりに Google API Discovery Service を使用することもできます。

2. レコメンデーション モデルはすべてカスタマイズされていますか?

「あなたへのおすすめ」と「関連商品のおすすめ」モデルは、ユーザーの履歴に基づいてカスタマイズされたレコメンデーションを表示します。「よく一緒に購入されている商品」と「似ている商品アイテム」のモデルはカスタマイズされません。

レコメンデーション モデルのタイプをご覧ください。

3. カスタマイズされたレコメンデーションをすぐに受け取れますか?それとも、改善までしばらく待つ必要がありますか?

レコメンデーションの精度は、ユーザー履歴の収集が増えるにつれて向上します。「あなたへのおすすめ」モデルは人気のある商品、「関連商品のおすすめ」モデルは、主に他ユーザーのビューを基に類似商品を表示します。どちらのモデルでもユーザーの行動はすぐに考慮されるため、リアルタイム イベントを送信することが重要です。レコメンデーション モデルのタイプをご覧ください。

カスタマイズを有効にするには、ユーザー イベントをリアルタイムまたはほぼリアルタイムで送信する必要があります。ユーザー イベントが日次でのみ、または 1 日の間にバッチで送信されると、リアルタイム イベントが送信されても、パーソナライズされたモデルのパフォーマンスは期待できません。

4. モデルで Google ユーザー属性データを使用していますか?

モデルは、指定したカタログとユーザー イベントデータのみを使用します。ユーザー属性データを含める場合は、カスタム属性として役立つ他のテキストや数値情報を含めることができます。このデータは、再調整された後にモデルによって使用が開始されます。

メールアドレスやユーザー名などの個人を特定できる情報(PII)を含めないでください。値をハッシュする、グループ ID を使用するなど、ユーザー属性データを匿名化することをおすすめします。

5. 個々のユーザーの履歴ではなく、ユーザー グループのイベント履歴に基づいてレコメンデーションを作成できますか?

現在、レコメンデーションは単一の訪問者 ID またはユーザー ID に基づいています。まず個別のリクエストを行い、その結果を結びつけて、グループの履歴に関するレコメンデーションのみを基本とします。ユーザーに共通のメタデータ属性がある場合、ユーザー ID としてグループ ID を使用してグループレベルのレコメンデーションを提供できます。

6. 商品のイメージ URL は送信できましたがモデルは商品画像を考慮していますか?

現在のところアカウントを統合することはできませんが、このフィールドは、レンダリングのレコメンデーション結果をサポートするために、このメタデータと返されたレコメンデーション結果を取得できるように指定されます。予測プレビューでは、Google Cloud コンソールでモデルの予測結果をプレビューする際に、イメージ URL を使用して画像が表示されます。

7. 会社は小売の e コマースサイトではありません。x、y、z の予測に Recommendations AI を使用できますか?

Recommendations AI は、コンテンツのおすすめ、動画ストリーミング、ゲームなどのユースケースに利用されています。ただし、現在、Google のコンテンツとエクスペリエンスは小売 e コマースのユースケースを念頭に置いて設計されているため、他のユースケースには適さないことがあります。

8. サイトのどのページにもレコメンデーションを表示できますか?

はい。ただし、各モデルは特定のユースケース向けに設計されており、特定のページで最適に動作します。レコメンデーション モデルのタイプをご覧ください。

「よく一緒に購入される商品」と「関連商品のおすすめ」には商品アイテム ID が必要なため、商品 ID やカート内の商品などを使用したレコメンデーションに使用する必要があります。「よく一緒に購入される商品」は、カートに追加ページまたはご購入手続きページで使用するのに最も適していますが、「関連商品のおすすめ」や「似ている商品アイテム」は、商品の詳細ページで使用するのに最も適しています。「あなたへのおすすめ」は、入力として訪問者 ID のみが必要ですが、ホームページ サービス提供構成として設計されているため、任意のページに配置できます。

9. メール ニュースレターのレコメンデーションに Recommendations AI を使用できますか?

はい。これを行うには、訪問者 ID またはユーザー ID を使用して API を呼び出し、その結果をメール テンプレートに組み込みます。メールの開封確認時にアイテムを動的に読み込むには、予測リクエストを送信するために Google Cloud Functions の関数などの中間エンドポイントを使用する必要があります。この API は、注文された商品 ID とメタデータのリストのみを提供するため、画像の結果をレンダリングする独自のコードも記述する必要があります。

10. ウェブ以外のユースケース(モバイルアプリ、キオスク)でも Retail API を使用できますか?

はい。アプリの結果を取得するには、エンドポイント(Google Cloud Functions など)を設定します。リアルタイム イベントを送信するために同様のメカニズムも必要です。

11. 3 か月以上のイベントデータがありません。Retail API を引き続き使用できますか?後ほどデータをさらに追加することはできますか?

「似ている商品アイテム」モデルでは、ユーザー イベント データまたはモデルのチューニングを使用しません。イベント データがなくても、カタログ データがある限り、「似ている商品アイテム」モデルを作成してトレーニングできます。

リアルタイム イベントのトラフィックを十分に記録できる場合は、最近のデータを他のモデルのトレーニングに使用できます。後日使用できるデータがある場合、初期モデル トレーニング後にアップロードできます。新しくバックフィルされたデータは、毎日の再トレーニング中にモデルに組み込まれます。ただし、データが、最初のトレーニングで使用されたイベントと大きく異なる場合は、モデルの再調整が必要になる場合があります。

ほとんどのモデルは、すべてのモデルについて 3 か月以上の期間のプロダクト ページビュー、ホームページ ビュー、「カートに追加」イベントがあると最適に機能します。理想的に機能するのは、「よく一緒に購入される商品」モデルの 1~2 年間の購入履歴がある場合です。

「関連商品のおすすめ」モデルと「あなたへのおすすめ」モデルのトレーニングを開始するには、1~2 週間のページビューの詳細だけで十分です。一方、「よく一緒に購入される商品」については、ページビュー数に比べて 1 日あたりの購入数がより少ないのが普通であるため、もっと多くのページビューの詳細が通常必要です。データが多いほどモデルの品質を顕著に改善できます。最低限のデータ量では最適な結果が得られない可能性があります。たとえば、1 年間の購入額を使用することで、モデルは季節性やトレンドをより適切に活用できます。

12. 商品と一緒にカテゴリを提案できますか?

Recommendations AI は現在、商品のレコメンデーションのみを返しますが、結果の一部として返される各商品のカテゴリを取得できます。

13. SQL データベースや他のシステム(BigQuery など)からデータをアップロードするための統合機能はありますか?

はい。イベントについては、BigQuery から読み取るサンプルコードが用意されています。BigQuery 用の Google アナリティクス サンプル データセットをご覧ください。

14. Retail API では Cookie を使用しますか?

Retail API では Cookie を使用しません。ただし、Retail API に送信されるすべてのイベントには、訪問者 ID を指定する必要があります。多くの場合、Cookie のセッション ID が使用されます。

15. Retail API 専用の GCP プロジェクトが必要ですか?

Retail API 用の新しい専用プロジェクトを作成するか、既存のプロジェクトで Retail API を有効にすることができます。

16. Cloud Shell で Retail API を使用すると認証情報が機能しないのはなぜですか?

Retail の認証の設定手順を完了していることを確認します。環境で使用可能にしたサービス アカウントを使用する必要があります。そうしないと、「アプリケーションは、サポートされていない Google Cloud SDK または Google Cloud Shell のエンドユーザー認証情報を使用して認証されています」のようなエラーが発生することがあります。

サービス アカウントの詳細については、Google Cloud ドキュメントの認証のセクションをご覧ください。

17. Retail API を類似のソリューションと比較するにはどうすればよいですか?

A/B テストを実施して、Retail API の結果と他の商品の結果を比較できます。

18. 特徴 x、y、z はすばらしいことだと思います。これを Retail API に追加できますか?

ご意見をお聞かせください。機能リクエストは、アカウント チーム、Google サポート、公開バグトラッカーから提出できます。

19. 引き続き Recommendations AI の API を使用できますか?

Recommendations AI は Recommendations Engine API から Retail API に移行しました。ベータ版の Recommendations Engine API を使用していた場合は、レコメンデーションを一般提供の Retail API(サービス エンドポイント https://retail.googleapis.com)に移行することをおすすめします。

以前の API(サービス エンドポイント https://recommendationengine.googleapis.com)とそのドキュメントは引き続き利用できますが、更新されることはありません。

カタログと商品

1. 新しい商品でコールド スタートは Recommendations AI でどのように処理されますか?

購入履歴がない商品の場合、類似する商品に基づいてレコメンデーションが表示されます。そのような場合は、カタログで良好な商品名、カテゴリ、説明を定義しておくことが特に重要です。

コールド スタート ユーザー(履歴のない訪問者)の場合、モデルは最も人気のある一般的な商品から始まり、ユーザー イベントが発生するにつれてリアルタイムでさらにカスタマイズされたものになります。

カタログとカタログ情報商品のリファレンス ページをご覧ください。

2. Merchant Center カタログをレコメンデーションに使用できますか?

はい。Merchant Center Data Transfer Service を使用して Merchant Center カタログを BigQuery にエクスポートできます。その後、BigQuery から直接カタログを読み取ることができます。Merchant Center からカタログデータをインポートするをご覧ください。

3. 他の方法でカタログをインポートするにはどうすればいいですか?

  • Merchant Center: Merchant Center を使用してインポートします。Retail Search を使用する場合、カタログが自動的に同期されるように、コンソールを使用して Merchant Center をリンクさせることができます。
  • BigQuery: テーブルまたはビューから直接インポートします。
  • Cloud Storage: 1 行に 1 つの JSON カタログ アイテムを含んだテキスト ファイルを使用してインポートします。
  • インライン インポート: 1 行に 1 つの JSON カタログ アイテムを含んだテキスト ファイルを使用して、API 呼び出しとともにインポートします。
  • 商品アイテムを作成する: Products 作成メソッドを使用します。

4. カタログを更新を維持するにはどうすればよいですか?カタログはどのくらいの頻度で更新する必要がありますか?

カタログを最新の状態に保つをご覧ください。

カタログは毎日更新することをおすすめします。Cloud Storage または BigQuery からの完全な更新、または増分更新(新しいアイテムと変更されたアイテムのみ)を実行できます。

可能であれば、価格と在庫状況をリアルタイムで更新します。これは、Retail Search で新しいアイテムをすばやく検索可能にする方法に影響します。

Pub/Sub、メッセージ キュー、イベントなどを介してカタログの変更について簡単に通知を受け取る方法がある場合は、インポートまたは作成の API メソッドを使用してリアルタイムでカタログを更新できます。

たとえば、Cloud Scheduler を使用して、毎日の BigQuery インポート呼び出しを行うことができます。

5. カタログの最小サイズと最大サイズはありますか?

最小サイズはありませんが、とても小さいカタログのサイズ(100 アイテム未満)だと、レコメンデーションする商品が非常に少ないため、レコメンデーションから得られるメリットはあまりありません。

カタログの最大アイテム数は 4,000 万です。

デフォルトの割り当てと上限のドキュメントと、割り当ての変更をリクエストする方法に関するドキュメントをご覧ください。

6. 会社が複数の国でウェブサイトを運営しています。すべてのデータで 1 つのカタログを使用するべきですか?

通常は、すべてのアイテムを含むカタログを 1 つだけ用意することをおすすめします。イベントはすべて 1 つの通貨を使用して送信する必要があります。現時点では、プロジェクト内で複数のカタログを使用することはできませんが、フィルタタグを使用して特定のサイトに特定の候補をフィルタできます。

カタログがサイトとユーザー イベント パターンが大幅に異なる場合は、サイトごとに独自のレコメンデーションがある個別のプロジェクトを作成することをおすすめします。

ただし、メインサイトよりもトラフィックが少ない類似したサイトがある場合、すべてのサイトで高品質のモデルを生成するのに十分なイベントがないのならば、1 つのカタログを使用することをおすすめします。

1 つのカタログを使用するには、カタログ アイテム ID を統一する必要があります。つまり、同じ商品は、カタログ内での商品の重複を避けるため、すべてのサイトで同じアイテム ID を持つ必要があります。

フィルタタグの更新には 8 時間程度かかることがあるため、国別の在庫状況(在庫切れ)の要件がある場合は、通常、予測後に結果を除外するビジネスルールで処理する必要があります。

7. Retail API は、カタログごとに複数の通貨をサポートしていますか?

いいえ、Retail API はカタログごとに 1 つの通貨タイプをサポートしています。単一の通貨を使用して Retail API にイベントをアップロードする必要があります。

Retail Google Cloud コンソールを使用して収益指標を取得する予定がある場合は、Retail API にアップロードする前に、すべてのイベントが同じ通貨を使用していることを確認するか、すべて同じ通貨に換算します。

8. 複数のサイトで、カタログや類似のアイテムを共有しています。Recommendations AI でクロスサイト レコメンデーションを提供できますか?

サイト間で大きな重複がある場合のみ、通常は 1 つのカタログを使用することをおすすめします。同じ商品を多数または完全に共有する必要があります。さらに、マルチリージョンのサイトと同様に、フィルタタグを使用して、特定の予測呼び出しでサイト固有の項目のみを返すことができます。

サイトで多数の、または 1 つのカタログ アイテムを共有していない場合や、使用パターンが著しく異なる場合は、複数のカタログを使用する必要があります。複数のカタログを使用するには、カタログごとに個別の Google Cloud プロジェクトが必要です。

9. メタデータを増やすとモデルが改善されますか?モデルでは、フィールド x、y、z が考慮されますか?

必須フィールドについては、カタログ アイテムの必須情報をご覧ください。

その他のメタデータ フィールドは省略可能です(例: 画像、itemAttributes)。それらは予測のプレビュー、結果の分析、トレーニング、チューニングに使用できます。色、サイズ、材料などの有用な属性を含めることをおすすめします。これらのフィールドは、returnProduct:true を指定することで予測結果の一部として返すことができます。そのため、結果のレンダリングに便利です。画像とアイテム属性は、Google Cloud コンソールの予測プレビューに使用されます。

10. モデルのトレーニングの入力として使用されるカタログ アイテムの属性はどれですか?

ユーザー行動と商品属性の組み合わせが使用されます。使用される主なフィールドは、ID、タイトル、カテゴリ階層、価格、URL です。Product.attributes[] に役立つ他のカスタム Key-Value 属性を含めることができます。

イメージ URL は便利な機能です。このメタデータを予測結果の一部として返すには、returnProduct:true を指定します。これにより、この情報を取得するための追加呼び出しを保存することができます。イメージの URL を指定すると、Google Cloud コンソールでモデルの予測結果をプレビューするときに予測プレビューでも画像を表示できます。

11. 商品でサポートされている言語は何ですか?

Retail API はほとんどの言語をサポートしています。このモデルは、テキストの言語を自動的に検出します。サポートされている言語の一覧については、Compact Language Detector の GitHub README をご覧ください。

カタログにはさまざまな言語のテキストを含めることができますが、複数の言語でテキストを提供する重複している商品は、モデルのパフォーマンスを低下させる可能性があることにご注意ください。

12. カタログにプライマリ / バリアントまたは親 / 子 の SKU があります。これらはサポート対象ですか?

はい。これは、Merchant Center の item_group_id に似ています。レコメンデーションを返す方法(親レベルまたは子レベル)と、イベントが親レベルまたは子レベルのどちらにあるかを決定する必要があります。

商品レベルについて詳しくは、商品レベルをご覧ください。

アイテムやイベントを送信する前に、正しい商品レベルを決定、設定します。商品レベルは変更できますが、アイテムの再結合とモデルの再調整が必要になります。

13. 使用できなくなった商品はカタログから削除できますか?

アイテムが最新でない場合は、アイテムを削除するのではなく、ステータスを OUT_OF_STOCK に設定して、そのアイテムを参照する過去のユーザー イベントが無効にならないようにすることをおすすめします。

ユーザーのイベント

1. 収集する必要があるユーザー イベントにはどのようなものがありますか?

Retail API が使用するユーザー イベント タイプのリスト、およびユーザー イベントの要件とおすすめの方法については、ユーザー イベントをご覧ください。

2. モデル作成時のデータ品質の問題をトラブルシューティングするにはどうすればよいですか?

Retail コンソールで、[View Data Quality] をクリックして、取り込まれたカタログとユーザー イベントに関するデータ品質指標を確認します。

3. Google アナリティクス 360 を統合できますか?

Google アナリティクス 360(GA360)の履歴データを使用できます。Merchant Center のデータと同様に、GA360 のデータを BigQuery にエクスポートすると、Retail API は BigQuery から直接イベントを読み取ることができます。

リアルタイム イベントの場合は、イベントが GA360 で遅延されるため、Google タグ マネージャーとトラッキング ピクセルを統合することをおすすめします。

4. Google アナリティクス 360 からユーザー イベントをインポートしたいと考えています。Retail API に必要なすべてのユーザー イベントが提供されますか?

Google アナリティクス 360 は、検索イベントを除く、Retail API で使用されるすべてのユーザー イベントをネイティブにサポートします。検索ユーザー イベントをアナリティクス 360 からインポートすることはできますが、Retail API は、検索クエリ、および商品のインプレッション(ある場合)からユーザー イベントを作成します。

5. Recommendations AI にイベントをフィードするにはどうすればよいですか?

通常、ユーザーは Cloud Storage または API インポートを使用して履歴イベントをインポートし、ライブサイトの JavaScript Pixel タグまたはタグ マネージャー タグまたはバックエンドで書き込みメソッドを使用して、リアルタイム イベントをストリーミングします。

6. モデルに必要なものとしてリストされたユーザー イベントタイプをすべて送信できない場合はどうすればよいですか?各モデルに必要な最小イベントタイプは何ですか?

各モデルと最適化目標の要件は多少異なります。ユーザー イベント データの要件をご覧ください。

一般的に、モデルのパフォーマンスはカタログ アイテムあたりのイベント数が多いほど高くなります。トラフィックが多くカタログ数の小さいサイトの場合は、少ない量の履歴イベントで始めることが可能ですが、通常は少なくとも数週間分の履歴データと進行中のリアルタイム イベントが必要になります。

7. 収益または数量に値のないカート追加イベントと購入完了イベントがあります。どのように送信すればよいですか?

数量の値がない場合は、モデルの結果に影響を与えずにデフォルト値 1 を渡すことができます。アイテムには、常に pricePrice を設定する必要があります(これは割引価格など、ユーザーに表示される任意の価格です)。originalPrice と cost は省略可能です。

8. 私のデータでは限られた種類のイベントしかカバーしていません。Retail API を引き続き使用できますか?

各モデルタイプの最小データ要件については、ユーザー イベントデータの要件をご覧ください。

検索結果

1. 検索結果はカスタマイズされていますか?

Retail Search は現在、カスタマイズされた結果を提供していません。

2. 検索リクエストの一部として、ユーザーが買い物をする店舗などのコンテキストを含めるにはどうすればよいですか?

店舗 ID による在庫状況と納品オプションは、商品カタログの属性です。納品オプションは、「オンラインで配信」、「オンライン購入」、「店舗受け取り」などの属性です。

属性は、検索リクエストでパラメータとして送信できます。そのため、この例では、検索リクエストでユーザーの店舗 ID を指定できます。結果は、リクエスト内の店舗 ID に基づいてフィルタリングまたはランク付けできます。

3. 検索結果で商品を非表示にできますか?

はい。filter パラメータを使用すると、タグに基づいて結果をフィルタできます。

4. 在庫状況や価格など、複数の基準でランク付けすることは可能ですか?

はい、[boostSpec] により複雑なランキング ルールを指定できます。

5. 複数のファセットを使用して結果を得るために、いくつかの属性をグループ化することは可能ですか?たとえば、商品の原産地が同じ国内の都市をグループ化する場合などです。

商品の属性は階層ではありません。ただし、複数のカスタム属性を使用して商品属性を階層にすることはできます。この例では、商品の原産国と原産地の両方にカスタム属性を使用できます。

6. 提案はどのような仕組みですか?

提案は、ユーザークエリ、書き換えられたクエリ、プロダクト名の組み合わせです。高品質なオートコンプリートの提案を生成するには、十分な数の検索イベントをカタログとともに取り込む必要があります。

予測結果

1. 返すことができる予測数に上限はありますか?

デフォルトでは、予測リクエストはレスポンスに 20 アイテムを返します。これは、pageSize の値を送信して増減できます。

100 件を超えるアイテムを返す必要がある場合は、Google サポートに連絡して上限を増やしてください。ただし、100 個以上の項目を返す場合は、レスポンスのレイテンシが長くなる可能性があります。

2. モデルが特定の商品のレコメンデーションを作成した理由を表示できますか?

現時点ではできません。

3. 予測結果をダウンロードしてキャッシュに保存できますか?

予測結果はサイト上のユーザー アクティビティに応じてリアルタイムで改善されるため、キャッシュ保存された予測の使用は推奨されません。モデルは毎日トレーニングして、カタログに対する変更を取り込み、ユーザー イベントの新しいトレンドに反応し、結果も変わります。

4. ビジネスルールに基づいて返されるレコメンデーションを再ランク付けする必要があります。これはサポートされていますか?

はい。ただし、ビジネスルールに基づいて返されたレコメンデーションを再ランク付けすることは可能ですが、レコメンデーション結果の順序変更やフィルタリングを行うと、選択した最適化目標の達成におけるモデルの全体的な効果が低下する可能性があるのでご注意ください。

価格の再ランキングでは、返された一連のレコメンデーションの中から、関連する価格の高い商品を順序付け、「関連商品のおすすめ」や「あなたへのおすすめ」モデルの組み込みのカスタマイズで使用できます。

料金の再ランキングをご覧ください。

5. 作成して使用できるフィルタタグの数に上限はありますか?

作成または使用可能なユニークタグの数にハードリミットはありません。しかし、システムは 1 つのアイテムにつき多くのフィルタタグを処理するようには設計されていません。可能であれば、フィルタタグをカタログ アイテムごとに最大 10 個に制限することをおすすめします。カタログ全体で 10 を超える値を使用できます。これはアイテムごとの上限です。合計タグ数(アイテムごとのタグ数の合計)の上限は 100,000,000 です。

Retail の割り当てと上限に関するドキュメントをご覧ください。

6. 最適化案を多様化できますか?

はい。多様化は、提供構成の一部として、または予測リクエストのパラメータで指定できます。多様化度が低い場合、予測に同じカテゴリの類似アイテムが含まれることがあります。多様化度が上がれば、他のカテゴリのアイテムも結果に含まれるようになります。

推奨対して料金で優先付けすることはできますか?

はい。料金の再ランキングでは、同様のおすすめの確率を持つおサービスが料金の高い順に並べられます。関連性はアイテムの注文にも使用されるため、価格の再ランキングを有効にしても、価格順の並べ替えとは同じになりません。料金の再ランキングは、サービス提供構成の一部として、または予測リクエスト パラメータで指定できます。

モデル

1. カタログとイベントをアップロードしましたが、Prediction API の呼び出すときに、次のレスポンスがまだ返されます。「レコメンデーション モデルの準備ができていません。統合目的で予測リクエストで「dryRun」を true に設定すると、カタログの任意のカタログ アイテムが返されます(本番環境トラフィックには使用しないでください)。」

これは通常、モデルのトレーニングが完了していないことを示します。モデルを作成してから 10 日以上経過してもこのレスポンスが引き続き返される場合は、サポートまでお問い合わせください。

2. モデルのトレーニングにはどのくらいの時間がかかりますか?

最初のモデルのトレーニングと調整には 2~5 日かかります。それ以降は、モデルを無効にしない限り、モデルは毎日自動的に再トレーニングされます。モデルのトレーニングの一時停止と再開をご覧ください。

3. モデルをダウンロードまたはエクスポートできますか?

ない。

4. 既存のプロジェクトで作成したモデルを新しいプロジェクトで使用できますか?

いいえ。新しいプロジェクトでモデルを作成して再トレーニングする必要があります。

5. カテゴリページにモデルを使いたいのですが、できますか?

はい。「あなたへのおすすめ」機能はカテゴリページに役立ちます。カテゴリページはホームページに似ていますが、そのカテゴリのアイテムのみを表示する点が異なります。これを実現するには、フィルタタグを持つ標準の「あなたへのおすすめ」モデルを使用します。たとえば、カスタマイズしたフィルタタグ(カテゴリページに対応)をカタログのアイテムに追加できます。予測リクエストを送信するときは、ユーザー イベント オブジェクトを category-page-viewとして設定し、特定のカテゴリページのタグを filter フィールドに指定します。リクエストされたフィルタタグに一致するレコメンデーションの結果のみが返されます。このユースケースでは、多様化を無効にする必要があります。多様化はカテゴリベースのフィルタタグと競合するためです。

6. モデルのカスタマイズを無効にできますか?

デフォルトでは、予測結果は、「関連商品のおすすめ」および「あなたへのおすすめ」のレコメンデーション モデルタイプ用にユーザーによってカスタマイズされます。

カスタマイズすることによって、モデルのパフォーマンスに悪影響を及ぼす可能性があるため、無効にすることはおすすめしません。

サイトでのユーザーの以前のエンゲージメントではなく、閲覧された商品に関連するカタログ アイテムを表示する場合は、予測リクエストでランダムな一意の訪問者 ID を使用して、パーソナライズされていないレコメンデーションを受け取れます。これは、カスタマイズしないサービス提供構成内のリクエストに対してのみ行ってください。

Retail Google Cloud コンソール

1. いくつかのイベントを削除しましたが、ダッシュボードにはこれらのイベントタイプの数がまだ表示されています。

これは予期されたエラーです。Google Cloud コンソールのダッシュボードには、特定の期間に取り込まれたイベントの数が表示されます。現在のカウントやイベント数は表示されません

通常、ユーザー イベントは記録後、所定の保存場所にそのままにしておく必要があります。イベントを完全に削除することはおすすめしません。ユーザー イベントを完全にリセットする予定の場合は、代わりに新しいプロジェクトの作成を検討してください。

適切に記録されていないイベントを削除する必要がある場合は、ユーザー イベントを削除するのドキュメントをご覧ください。イベントの削除が完了するまで数日かかる可能性があります。

2. カタログやユーザー イベントでエラーが発生しているかどうかを確認するにはどうすればよいですか?

カタログ アイテムの更新またはユーザー イベントのほとんどの API 呼び出しでは、構文に問題があるか、なんらかの理由でリクエストを処理できない場合にエラーが返されます。

Google Cloud コンソールのダッシュボードには、結合されていないイベントの割合が表示されます。これは、カタログやイベントの問題を検出するための有用な指標でもあります。カタログにないアイテム ID が指定された場合、結合されていないイベント(または結合されていない予測呼び出し)が発生します。これは通常、カタログが最新でないため、新規または変更されたカタログ アイテムをアップロードする必要があるものの、間違ったアイテム ID が渡されたことが原因の可能性もあります。リクエストを確認して、アイテム ID がカタログに正しくマッピングされていることを確認し、アップロードしたカタログでアイテムが存在することを確認します。

Cloud MonitoringCloud Logging を使用して、イベントのステータスをモニタリングできます。たとえば、特定の期間にイベントがない場合や、予測呼び出しが特定のしきい値を下回った場合に、アラートを受信できます。

3. レコメンデーションのサービス提供構成が無効になっているのはなぜですか?どうすれば有効にできますか?

レコメンデーションのサービス提供構成を使用するには、まずカタログユーザー イベントデータを送信して、対応するモデルをトレーニングする必要があります。モデルのトレーニングが終了すると、ダッシュボードにモデルがクエリできる状態であることが示されます。

4. Google Cloud コンソールが収益指標を報告するにはどの通貨を使用しますか?

Retail Google Cloud コンソールは、アップロードしたデータで使用されている通貨の指標をレポートします。Retail API は、カタログごとに複数の通貨を使用することはサポートしておらず、通貨を変換しません。

Retail Google Cloud コンソールを使用して収益指標を取得する予定がある場合は、Retail API にアップロードする前に、すべてのイベントが同じ通貨を使用していることを確認するか、すべて同じ通貨に換算します。