Analyser les sentiments dans une chaîne

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Inspectez le texte donné et identifiez l'opinion émotionnelle dominante.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Go


func analyzeSentiment(ctx context.Context, client *language.Client, text string) (*languagepb.AnalyzeSentimentResponse, error) {
	return client.AnalyzeSentiment(ctx, &languagepb.AnalyzeSentimentRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
	})
}

Java

// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();
  AnalyzeSentimentResponse response = language.analyzeSentiment(doc);
  Sentiment sentiment = response.getDocumentSentiment();
  if (sentiment == null) {
    System.out.println("No sentiment found");
  } else {
    System.out.printf("Sentiment magnitude: %.3f\n", sentiment.getMagnitude());
    System.out.printf("Sentiment score: %.3f\n", sentiment.getScore());
  }
  return sentiment;
}

Node.js

// Imports the Google Cloud client library
const language = require('@google-cloud/language');

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Detects the sentiment of the document
const [result] = await client.analyzeSentiment({document});

const sentiment = result.documentSentiment;
console.log('Document sentiment:');
console.log(`  Score: ${sentiment.score}`);
console.log(`  Magnitude: ${sentiment.magnitude}`);

const sentences = result.sentences;
sentences.forEach(sentence => {
  console.log(`Sentence: ${sentence.text.content}`);
  console.log(`  Score: ${sentence.sentiment.score}`);
  console.log(`  Magnitude: ${sentence.sentiment.magnitude}`);
});

PHP

use Google\Cloud\Language\V1\Document;
use Google\Cloud\Language\V1\Document\Type;
use Google\Cloud\Language\V1\LanguageServiceClient;

/**
 * @param string $text The text to analyze
 */
function analyze_sentiment(string $text): void
{
    $languageServiceClient = new LanguageServiceClient();

    // Create a new Document, add text as content and set type to PLAIN_TEXT
    $document = (new Document())
        ->setContent($text)
        ->setType(Type::PLAIN_TEXT);

    // Call the analyzeSentiment function
    $response = $languageServiceClient->analyzeSentiment($document);
    $document_sentiment = $response->getDocumentSentiment();
    // Print document information
    printf('Document Sentiment:' . PHP_EOL);
    printf('  Magnitude: %s' . PHP_EOL, $document_sentiment->getMagnitude());
    printf('  Score: %s' . PHP_EOL, $document_sentiment->getScore());
    printf(PHP_EOL);
    $sentences = $response->getSentences();
    foreach ($sentences as $sentence) {
        printf('Sentence: %s' . PHP_EOL, $sentence->getText()->getContent());
        printf('Sentence Sentiment:' . PHP_EOL);
        $sentiment = $sentence->getSentiment();
        if ($sentiment) {
            printf('Entity Magnitude: %s' . PHP_EOL, $sentiment->getMagnitude());
            printf('Entity Score: %s' . PHP_EOL, $sentiment->getScore());
        }
        print(PHP_EOL);
    }
}

Python


from google.cloud import language_v1
import six

def sample_analyze_sentiment(content):

    client = language_v1.LanguageServiceClient()

    # content = 'Your text to analyze, e.g. Hello, world!'

    if isinstance(content, six.binary_type):
        content = content.decode("utf-8")

    type_ = language_v1.Document.Type.PLAIN_TEXT
    document = {"type_": type_, "content": content}

    response = client.analyze_sentiment(request={"document": document})
    sentiment = response.document_sentiment
    print("Score: {}".format(sentiment.score))
    print("Magnitude: {}".format(sentiment.magnitude))

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'exemple de navigateur Google Cloud.