- 1.54.0 (latest)
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.42.0
- 1.41.0
- 1.40.0
- 1.39.0
- 1.38.0
- 1.37.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.0
- 1.10.0
- 1.9.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.3
- 1.0.6
- 0.6.2
public interface ExecutionTemplateOrBuilder extends MessageOrBuilder
Implements
MessageOrBuilderMethods
containsLabels(String key)
public abstract boolean containsLabels(String key)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Name | Description |
key | String |
Type | Description |
boolean |
getAcceleratorConfig()
public abstract ExecutionTemplate.SchedulerAcceleratorConfig getAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
Type | Description |
ExecutionTemplate.SchedulerAcceleratorConfig | The acceleratorConfig. |
getAcceleratorConfigOrBuilder()
public abstract ExecutionTemplate.SchedulerAcceleratorConfigOrBuilder getAcceleratorConfigOrBuilder()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
Type | Description |
ExecutionTemplate.SchedulerAcceleratorConfigOrBuilder |
getContainerImageUri()
public abstract String getContainerImageUri()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string container_image_uri = 6;
Type | Description |
String | The containerImageUri. |
getContainerImageUriBytes()
public abstract ByteString getContainerImageUriBytes()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string container_image_uri = 6;
Type | Description |
ByteString | The bytes for containerImageUri. |
getDataprocParameters()
public abstract ExecutionTemplate.DataprocParameters getDataprocParameters()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
Type | Description |
ExecutionTemplate.DataprocParameters | The dataprocParameters. |
getDataprocParametersOrBuilder()
public abstract ExecutionTemplate.DataprocParametersOrBuilder getDataprocParametersOrBuilder()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
Type | Description |
ExecutionTemplate.DataprocParametersOrBuilder |
getInputNotebookFile()
public abstract String getInputNotebookFile()
Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{bucket_name}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
string input_notebook_file = 5;
Type | Description |
String | The inputNotebookFile. |
getInputNotebookFileBytes()
public abstract ByteString getInputNotebookFileBytes()
Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{bucket_name}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
string input_notebook_file = 5;
Type | Description |
ByteString | The bytes for inputNotebookFile. |
getJobParametersCase()
public abstract ExecutionTemplate.JobParametersCase getJobParametersCase()
Type | Description |
ExecutionTemplate.JobParametersCase |
getJobType()
public abstract ExecutionTemplate.JobType getJobType()
The type of Job to be used on this execution.
.google.cloud.notebooks.v1.ExecutionTemplate.JobType job_type = 11;
Type | Description |
ExecutionTemplate.JobType | The jobType. |
getJobTypeValue()
public abstract int getJobTypeValue()
The type of Job to be used on this execution.
.google.cloud.notebooks.v1.ExecutionTemplate.JobType job_type = 11;
Type | Description |
int | The enum numeric value on the wire for jobType. |
getKernelSpec()
public abstract String getKernelSpec()
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
string kernel_spec = 14;
Type | Description |
String | The kernelSpec. |
getKernelSpecBytes()
public abstract ByteString getKernelSpecBytes()
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
string kernel_spec = 14;
Type | Description |
ByteString | The bytes for kernelSpec. |
getLabels()
public abstract Map<String,String> getLabels()
Use #getLabelsMap() instead.
Type | Description |
Map<String,String> |
getLabelsCount()
public abstract int getLabelsCount()
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Type | Description |
int |
getLabelsMap()
public abstract Map<String,String> getLabelsMap()
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Type | Description |
Map<String,String> |
getLabelsOrDefault(String key, String defaultValue)
public abstract String getLabelsOrDefault(String key, String defaultValue)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Name | Description |
key | String |
defaultValue | String |
Type | Description |
String |
getLabelsOrThrow(String key)
public abstract String getLabelsOrThrow(String key)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Name | Description |
key | String |
Type | Description |
String |
getMasterType()
public abstract String getMasterType()
Specifies the type of virtual machine to use for your training
job's master worker. You must specify this field when scaleTier
is set to
CUSTOM
.
You can use certain Compute Engine machine types directly in this field.
The following types are supported:
n1-standard-4
n1-standard-8
n1-standard-16
n1-standard-32
n1-standard-64
n1-standard-96
n1-highmem-2
n1-highmem-4
n1-highmem-8
n1-highmem-16
n1-highmem-32
n1-highmem-64
n1-highmem-96
n1-highcpu-16
n1-highcpu-32
n1-highcpu-64
n1-highcpu-96
Alternatively, you can use the following legacy machine types:standard
large_model
complex_model_s
complex_model_m
complex_model_l
standard_gpu
complex_model_m_gpu
complex_model_l_gpu
standard_p100
complex_model_m_p100
standard_v100
large_model_v100
complex_model_m_v100
complex_model_l_v100
Finally, if you want to use a TPU for training, specifycloud_tpu
in this field. Learn more about the special configuration options for training with TPU.
string master_type = 2;
Type | Description |
String | The masterType. |
getMasterTypeBytes()
public abstract ByteString getMasterTypeBytes()
Specifies the type of virtual machine to use for your training
job's master worker. You must specify this field when scaleTier
is set to
CUSTOM
.
You can use certain Compute Engine machine types directly in this field.
The following types are supported:
n1-standard-4
n1-standard-8
n1-standard-16
n1-standard-32
n1-standard-64
n1-standard-96
n1-highmem-2
n1-highmem-4
n1-highmem-8
n1-highmem-16
n1-highmem-32
n1-highmem-64
n1-highmem-96
n1-highcpu-16
n1-highcpu-32
n1-highcpu-64
n1-highcpu-96
Alternatively, you can use the following legacy machine types:standard
large_model
complex_model_s
complex_model_m
complex_model_l
standard_gpu
complex_model_m_gpu
complex_model_l_gpu
standard_p100
complex_model_m_p100
standard_v100
large_model_v100
complex_model_m_v100
complex_model_l_v100
Finally, if you want to use a TPU for training, specifycloud_tpu
in this field. Learn more about the special configuration options for training with TPU.
string master_type = 2;
Type | Description |
ByteString | The bytes for masterType. |
getOutputNotebookFolder()
public abstract String getOutputNotebookFolder()
Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{bucket_name}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
string output_notebook_folder = 7;
Type | Description |
String | The outputNotebookFolder. |
getOutputNotebookFolderBytes()
public abstract ByteString getOutputNotebookFolderBytes()
Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{bucket_name}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
string output_notebook_folder = 7;
Type | Description |
ByteString | The bytes for outputNotebookFolder. |
getParameters()
public abstract String getParameters()
Parameters used within the 'input_notebook_file' notebook.
string parameters = 9;
Type | Description |
String | The parameters. |
getParametersBytes()
public abstract ByteString getParametersBytes()
Parameters used within the 'input_notebook_file' notebook.
string parameters = 9;
Type | Description |
ByteString | The bytes for parameters. |
getParamsYamlFile()
public abstract String getParamsYamlFile()
Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
string params_yaml_file = 8;
Type | Description |
String | The paramsYamlFile. |
getParamsYamlFileBytes()
public abstract ByteString getParamsYamlFileBytes()
Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
string params_yaml_file = 8;
Type | Description |
ByteString | The bytes for paramsYamlFile. |
getScaleTier() (deprecated)
public abstract ExecutionTemplate.ScaleTier getScaleTier()
Deprecated. google.cloud.notebooks.v1.ExecutionTemplate.scale_tier is deprecated. See google/cloud/notebooks/v1/execution.proto;l=150
Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
.google.cloud.notebooks.v1.ExecutionTemplate.ScaleTier scale_tier = 1 [deprecated = true, (.google.api.field_behavior) = REQUIRED];
Type | Description |
ExecutionTemplate.ScaleTier | The scaleTier. |
getScaleTierValue() (deprecated)
public abstract int getScaleTierValue()
Deprecated. google.cloud.notebooks.v1.ExecutionTemplate.scale_tier is deprecated. See google/cloud/notebooks/v1/execution.proto;l=150
Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
.google.cloud.notebooks.v1.ExecutionTemplate.ScaleTier scale_tier = 1 [deprecated = true, (.google.api.field_behavior) = REQUIRED];
Type | Description |
int | The enum numeric value on the wire for scaleTier. |
getServiceAccount()
public abstract String getServiceAccount()
The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
string service_account = 10;
Type | Description |
String | The serviceAccount. |
getServiceAccountBytes()
public abstract ByteString getServiceAccountBytes()
The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
string service_account = 10;
Type | Description |
ByteString | The bytes for serviceAccount. |
getTensorboard()
public abstract String getTensorboard()
The name of a Vertex AI [Tensorboard] resource to which this execution
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
string tensorboard = 15 [(.google.api.resource_reference) = { ... }
Type | Description |
String | The tensorboard. |
getTensorboardBytes()
public abstract ByteString getTensorboardBytes()
The name of a Vertex AI [Tensorboard] resource to which this execution
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
string tensorboard = 15 [(.google.api.resource_reference) = { ... }
Type | Description |
ByteString | The bytes for tensorboard. |
getVertexAiParameters()
public abstract ExecutionTemplate.VertexAIParameters getVertexAiParameters()
Parameters used in Vertex AI JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.VertexAIParameters vertex_ai_parameters = 13;
Type | Description |
ExecutionTemplate.VertexAIParameters | The vertexAiParameters. |
getVertexAiParametersOrBuilder()
public abstract ExecutionTemplate.VertexAIParametersOrBuilder getVertexAiParametersOrBuilder()
Parameters used in Vertex AI JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.VertexAIParameters vertex_ai_parameters = 13;
Type | Description |
ExecutionTemplate.VertexAIParametersOrBuilder |
hasAcceleratorConfig()
public abstract boolean hasAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
Type | Description |
boolean | Whether the acceleratorConfig field is set. |
hasDataprocParameters()
public abstract boolean hasDataprocParameters()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
Type | Description |
boolean | Whether the dataprocParameters field is set. |
hasVertexAiParameters()
public abstract boolean hasVertexAiParameters()
Parameters used in Vertex AI JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.VertexAIParameters vertex_ai_parameters = 13;
Type | Description |
boolean | Whether the vertexAiParameters field is set. |