- 1.53.0 (latest)
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.42.0
- 1.41.0
- 1.40.0
- 1.39.0
- 1.38.0
- 1.37.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.0
- 1.10.0
- 1.9.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.3
- 1.0.6
- 0.6.2
public interface ExecutionTemplateOrBuilder extends MessageOrBuilder
Implements
MessageOrBuilderMethods
containsLabels(String key)
public abstract boolean containsLabels(String key)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Name | Description |
key | String |
Type | Description |
boolean |
getAcceleratorConfig()
public abstract ExecutionTemplate.SchedulerAcceleratorConfig getAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
Type | Description |
ExecutionTemplate.SchedulerAcceleratorConfig | The acceleratorConfig. |
getAcceleratorConfigOrBuilder()
public abstract ExecutionTemplate.SchedulerAcceleratorConfigOrBuilder getAcceleratorConfigOrBuilder()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
Type | Description |
ExecutionTemplate.SchedulerAcceleratorConfigOrBuilder |
getContainerImageUri()
public abstract String getContainerImageUri()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string container_image_uri = 6;
Type | Description |
String | The containerImageUri. |
getContainerImageUriBytes()
public abstract ByteString getContainerImageUriBytes()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string container_image_uri = 6;
Type | Description |
ByteString | The bytes for containerImageUri. |
getDataprocParameters()
public abstract ExecutionTemplate.DataprocParameters getDataprocParameters()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
Type | Description |
ExecutionTemplate.DataprocParameters | The dataprocParameters. |
getDataprocParametersOrBuilder()
public abstract ExecutionTemplate.DataprocParametersOrBuilder getDataprocParametersOrBuilder()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
Type | Description |
ExecutionTemplate.DataprocParametersOrBuilder |
getInputNotebookFile()
public abstract String getInputNotebookFile()
Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{project_id}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
string input_notebook_file = 5;
Type | Description |
String | The inputNotebookFile. |
getInputNotebookFileBytes()
public abstract ByteString getInputNotebookFileBytes()
Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{project_id}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
string input_notebook_file = 5;
Type | Description |
ByteString | The bytes for inputNotebookFile. |
getJobParametersCase()
public abstract ExecutionTemplate.JobParametersCase getJobParametersCase()
Type | Description |
ExecutionTemplate.JobParametersCase |
getJobType()
public abstract ExecutionTemplate.JobType getJobType()
The type of Job to be used on this execution.
.google.cloud.notebooks.v1.ExecutionTemplate.JobType job_type = 11;
Type | Description |
ExecutionTemplate.JobType | The jobType. |
getJobTypeValue()
public abstract int getJobTypeValue()
The type of Job to be used on this execution.
.google.cloud.notebooks.v1.ExecutionTemplate.JobType job_type = 11;
Type | Description |
int | The enum numeric value on the wire for jobType. |
getLabels()
public abstract Map<String,String> getLabels()
Use #getLabelsMap() instead.
Type | Description |
Map<String,String> |
getLabelsCount()
public abstract int getLabelsCount()
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Type | Description |
int |
getLabelsMap()
public abstract Map<String,String> getLabelsMap()
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Type | Description |
Map<String,String> |
getLabelsOrDefault(String key, String defaultValue)
public abstract String getLabelsOrDefault(String key, String defaultValue)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Name | Description |
key | String |
defaultValue | String |
Type | Description |
String |
getLabelsOrThrow(String key)
public abstract String getLabelsOrThrow(String key)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
Name | Description |
key | String |
Type | Description |
String |
getMasterType()
public abstract String getMasterType()
Specifies the type of virtual machine to use for your training
job's master worker. You must specify this field when scaleTier
is set to
CUSTOM
.
You can use certain Compute Engine machine types directly in this field.
The following types are supported:
n1-standard-4
n1-standard-8
n1-standard-16
n1-standard-32
n1-standard-64
n1-standard-96
n1-highmem-2
n1-highmem-4
n1-highmem-8
n1-highmem-16
n1-highmem-32
n1-highmem-64
n1-highmem-96
n1-highcpu-16
n1-highcpu-32
n1-highcpu-64
n1-highcpu-96
Alternatively, you can use the following legacy machine types:standard
large_model
complex_model_s
complex_model_m
complex_model_l
standard_gpu
complex_model_m_gpu
complex_model_l_gpu
standard_p100
complex_model_m_p100
standard_v100
large_model_v100
complex_model_m_v100
complex_model_l_v100
Finally, if you want to use a TPU for training, specifycloud_tpu
in this field. Learn more about the [special configuration options for training with TPU.
string master_type = 2;
Type | Description |
String | The masterType. |
getMasterTypeBytes()
public abstract ByteString getMasterTypeBytes()
Specifies the type of virtual machine to use for your training
job's master worker. You must specify this field when scaleTier
is set to
CUSTOM
.
You can use certain Compute Engine machine types directly in this field.
The following types are supported:
n1-standard-4
n1-standard-8
n1-standard-16
n1-standard-32
n1-standard-64
n1-standard-96
n1-highmem-2
n1-highmem-4
n1-highmem-8
n1-highmem-16
n1-highmem-32
n1-highmem-64
n1-highmem-96
n1-highcpu-16
n1-highcpu-32
n1-highcpu-64
n1-highcpu-96
Alternatively, you can use the following legacy machine types:standard
large_model
complex_model_s
complex_model_m
complex_model_l
standard_gpu
complex_model_m_gpu
complex_model_l_gpu
standard_p100
complex_model_m_p100
standard_v100
large_model_v100
complex_model_m_v100
complex_model_l_v100
Finally, if you want to use a TPU for training, specifycloud_tpu
in this field. Learn more about the [special configuration options for training with TPU.
string master_type = 2;
Type | Description |
ByteString | The bytes for masterType. |
getOutputNotebookFolder()
public abstract String getOutputNotebookFolder()
Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{project_id}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
string output_notebook_folder = 7;
Type | Description |
String | The outputNotebookFolder. |
getOutputNotebookFolderBytes()
public abstract ByteString getOutputNotebookFolderBytes()
Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{project_id}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
string output_notebook_folder = 7;
Type | Description |
ByteString | The bytes for outputNotebookFolder. |
getParameters()
public abstract String getParameters()
Parameters used within the 'input_notebook_file' notebook.
string parameters = 9;
Type | Description |
String | The parameters. |
getParametersBytes()
public abstract ByteString getParametersBytes()
Parameters used within the 'input_notebook_file' notebook.
string parameters = 9;
Type | Description |
ByteString | The bytes for parameters. |
getParamsYamlFile()
public abstract String getParamsYamlFile()
Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
string params_yaml_file = 8;
Type | Description |
String | The paramsYamlFile. |
getParamsYamlFileBytes()
public abstract ByteString getParamsYamlFileBytes()
Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
string params_yaml_file = 8;
Type | Description |
ByteString | The bytes for paramsYamlFile. |
getScaleTier()
public abstract ExecutionTemplate.ScaleTier getScaleTier()
Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
.google.cloud.notebooks.v1.ExecutionTemplate.ScaleTier scale_tier = 1 [deprecated = true, (.google.api.field_behavior) = REQUIRED];
Type | Description |
ExecutionTemplate.ScaleTier | The scaleTier. |
getScaleTierValue()
public abstract int getScaleTierValue()
Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
.google.cloud.notebooks.v1.ExecutionTemplate.ScaleTier scale_tier = 1 [deprecated = true, (.google.api.field_behavior) = REQUIRED];
Type | Description |
int | The enum numeric value on the wire for scaleTier. |
getServiceAccount()
public abstract String getServiceAccount()
The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
string service_account = 10;
Type | Description |
String | The serviceAccount. |
getServiceAccountBytes()
public abstract ByteString getServiceAccountBytes()
The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
string service_account = 10;
Type | Description |
ByteString | The bytes for serviceAccount. |
hasAcceleratorConfig()
public abstract boolean hasAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
Type | Description |
boolean | Whether the acceleratorConfig field is set. |
hasDataprocParameters()
public abstract boolean hasDataprocParameters()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
Type | Description |
boolean | Whether the dataprocParameters field is set. |