- 2.54.0 (latest)
- 2.53.0
- 2.52.0
- 2.51.0
- 2.49.0
- 2.48.0
- 2.47.0
- 2.46.0
- 2.45.0
- 2.44.0
- 2.43.0
- 2.42.0
- 2.41.0
- 2.40.0
- 2.39.0
- 2.37.0
- 2.36.0
- 2.35.0
- 2.34.0
- 2.33.0
- 2.32.0
- 2.31.0
- 2.30.0
- 2.29.0
- 2.28.0
- 2.27.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.18
- 2.2.3
- 2.1.23
public static final class ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder extends GeneratedMessageV3.Builder<ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder> implements ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrixOrBuilder
Confusion matrix of the model running the classification.
Protobuf type
google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.BuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Type | Description |
Descriptor |
Methods
addAllAnnotationSpecId(Iterable<String> values)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAllAnnotationSpecId(Iterable<String> values)
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Name | Description |
values | Iterable<String> The annotationSpecId to add. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
addAllDisplayName(Iterable<String> values)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAllDisplayName(Iterable<String> values)
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Name | Description |
values | Iterable<String> The displayName to add. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
addAllRow(Iterable<? extends ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row> values)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAllRow(Iterable<? extends ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row> values)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
values | Iterable<? extends com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row> |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
addAnnotationSpecId(String value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAnnotationSpecId(String value)
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Name | Description |
value | String The annotationSpecId to add. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
addAnnotationSpecIdBytes(ByteString value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAnnotationSpecIdBytes(ByteString value)
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Name | Description |
value | ByteString The bytes of the annotationSpecId to add. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
addDisplayName(String value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addDisplayName(String value)
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Name | Description |
value | String The displayName to add. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
addDisplayNameBytes(ByteString value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addDisplayNameBytes(ByteString value)
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Name | Description |
value | ByteString The bytes of the displayName to add. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Name | Description |
field | FieldDescriptor |
value | Object |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
value | ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
builderForValue | ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
value | ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
builderForValue | ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
addRowBuilder()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder addRowBuilder()
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder |
addRowBuilder(int index)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder addRowBuilder(int index)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder |
build()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix build()
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix |
buildPartial()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix buildPartial()
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix |
clear()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clear()
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
clearAnnotationSpecId()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearAnnotationSpecId()
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
clearDisplayName()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearDisplayName()
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
clearField(Descriptors.FieldDescriptor field)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearField(Descriptors.FieldDescriptor field)
Name | Description |
field | FieldDescriptor |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
clearOneof(Descriptors.OneofDescriptor oneof)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Name | Description |
oneof | OneofDescriptor |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
clearRow()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearRow()
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
clone()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clone()
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
getAnnotationSpecId(int index)
public String getAnnotationSpecId(int index)
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Name | Description |
index | int The index of the element to return. |
Type | Description |
String | The annotationSpecId at the given index. |
getAnnotationSpecIdBytes(int index)
public ByteString getAnnotationSpecIdBytes(int index)
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Name | Description |
index | int The index of the value to return. |
Type | Description |
ByteString | The bytes of the annotationSpecId at the given index. |
getAnnotationSpecIdCount()
public int getAnnotationSpecIdCount()
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Type | Description |
int | The count of annotationSpecId. |
getAnnotationSpecIdList()
public ProtocolStringList getAnnotationSpecIdList()
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Type | Description |
ProtocolStringList | A list containing the annotationSpecId. |
getDefaultInstanceForType()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix getDefaultInstanceForType()
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Type | Description |
Descriptor |
getDisplayName(int index)
public String getDisplayName(int index)
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Name | Description |
index | int The index of the element to return. |
Type | Description |
String | The displayName at the given index. |
getDisplayNameBytes(int index)
public ByteString getDisplayNameBytes(int index)
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Name | Description |
index | int The index of the value to return. |
Type | Description |
ByteString | The bytes of the displayName at the given index. |
getDisplayNameCount()
public int getDisplayNameCount()
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Type | Description |
int | The count of displayName. |
getDisplayNameList()
public ProtocolStringList getDisplayNameList()
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Type | Description |
ProtocolStringList | A list containing the displayName. |
getRow(int index)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row getRow(int index)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row |
getRowBuilder(int index)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder getRowBuilder(int index)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder |
getRowBuilderList()
public List<ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder> getRowBuilderList()
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Type | Description |
List<Builder> |
getRowCount()
public int getRowCount()
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Type | Description |
int |
getRowList()
public List<ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row> getRowList()
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Type | Description |
List<Row> |
getRowOrBuilder(int index)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder getRowOrBuilder(int index)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder |
getRowOrBuilderList()
public List<? extends ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder> getRowOrBuilderList()
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Type | Description |
List<? extends com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder> |
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Type | Description |
FieldAccessorTable |
isInitialized()
public final boolean isInitialized()
Type | Description |
boolean |
mergeFrom(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix other)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeFrom(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix other)
Name | Description |
other | ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Name | Description |
input | CodedInputStream |
extensionRegistry | ExtensionRegistryLite |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
Type | Description |
IOException |
mergeFrom(Message other)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeFrom(Message other)
Name | Description |
other | Message |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Name | Description |
unknownFields | UnknownFieldSet |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
removeRow(int index)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder removeRow(int index)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
setAnnotationSpecId(int index, String value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setAnnotationSpecId(int index, String value)
Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION prediction_type only list of [annotation_spec_display_name-s][] is populated.
repeated string annotation_spec_id = 1;
Name | Description |
index | int The index to set the value at. |
value | String The annotationSpecId to set. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
setDisplayName(int index, String value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setDisplayName(int index, String value)
Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.
repeated string display_name = 3;
Name | Description |
index | int The index to set the value at. |
value | String The displayName to set. |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder | This builder for chaining. |
setField(Descriptors.FieldDescriptor field, Object value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setField(Descriptors.FieldDescriptor field, Object value)
Name | Description |
field | FieldDescriptor |
value | Object |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Name | Description |
field | FieldDescriptor |
index | int |
value | Object |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
value | ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)
Output only. Rows in the confusion matrix. The number of rows is equal to
the size of annotation_spec_id
.
row[i].example_count[j]
is the number of examples that have ground
truth of the annotation_spec_id[i]
and are predicted as
annotation_spec_id[j]
by the model being evaluated.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;
Name | Description |
index | int |
builderForValue | ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |
setUnknownFields(UnknownFieldSet unknownFields)
public final ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setUnknownFields(UnknownFieldSet unknownFields)
Name | Description |
unknownFields | UnknownFieldSet |
Type | Description |
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder |