- 3.55.0 (latest)
- 3.54.0
- 3.53.0
- 3.52.0
- 3.50.0
- 3.49.0
- 3.48.0
- 3.47.0
- 3.46.0
- 3.45.0
- 3.44.0
- 3.43.0
- 3.42.0
- 3.41.0
- 3.40.0
- 3.38.0
- 3.37.0
- 3.36.0
- 3.35.0
- 3.34.0
- 3.33.0
- 3.32.0
- 3.31.0
- 3.30.0
- 3.29.0
- 3.28.0
- 3.25.0
- 3.24.0
- 3.23.0
- 3.22.0
- 3.21.0
- 3.20.0
- 3.19.0
- 3.18.0
- 3.17.0
- 3.16.0
- 3.15.0
- 3.14.0
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.2
- 3.3.0
- 3.2.0
- 3.0.0
- 2.9.8
- 2.8.9
- 2.7.4
- 2.5.3
- 2.4.0
public static interface ModelMonitoringObjectiveConfig.TrainingPredictionSkewDetectionConfigOrBuilder extends MessageOrBuilder
Implements
MessageOrBuilderMethods
containsAttributionScoreSkewThresholds(String key)
public abstract boolean containsAttributionScoreSkewThresholds(String key)
Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> attribution_score_skew_thresholds = 2;
Name | Description |
key | String |
Type | Description |
boolean |
containsSkewThresholds(String key)
public abstract boolean containsSkewThresholds(String key)
Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> skew_thresholds = 1;
Name | Description |
key | String |
Type | Description |
boolean |
getAttributionScoreSkewThresholds()
public abstract Map<String,ThresholdConfig> getAttributionScoreSkewThresholds()
Use #getAttributionScoreSkewThresholdsMap() instead.
Type | Description |
Map<String,ThresholdConfig> |
getAttributionScoreSkewThresholdsCount()
public abstract int getAttributionScoreSkewThresholdsCount()
Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> attribution_score_skew_thresholds = 2;
Type | Description |
int |
getAttributionScoreSkewThresholdsMap()
public abstract Map<String,ThresholdConfig> getAttributionScoreSkewThresholdsMap()
Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> attribution_score_skew_thresholds = 2;
Type | Description |
Map<String,ThresholdConfig> |
getAttributionScoreSkewThresholdsOrDefault(String key, ThresholdConfig defaultValue)
public abstract ThresholdConfig getAttributionScoreSkewThresholdsOrDefault(String key, ThresholdConfig defaultValue)
Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> attribution_score_skew_thresholds = 2;
Name | Description |
key | String |
defaultValue | ThresholdConfig |
Type | Description |
ThresholdConfig |
getAttributionScoreSkewThresholdsOrThrow(String key)
public abstract ThresholdConfig getAttributionScoreSkewThresholdsOrThrow(String key)
Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> attribution_score_skew_thresholds = 2;
Name | Description |
key | String |
Type | Description |
ThresholdConfig |
getSkewThresholds()
public abstract Map<String,ThresholdConfig> getSkewThresholds()
Use #getSkewThresholdsMap() instead.
Type | Description |
Map<String,ThresholdConfig> |
getSkewThresholdsCount()
public abstract int getSkewThresholdsCount()
Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> skew_thresholds = 1;
Type | Description |
int |
getSkewThresholdsMap()
public abstract Map<String,ThresholdConfig> getSkewThresholdsMap()
Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> skew_thresholds = 1;
Type | Description |
Map<String,ThresholdConfig> |
getSkewThresholdsOrDefault(String key, ThresholdConfig defaultValue)
public abstract ThresholdConfig getSkewThresholdsOrDefault(String key, ThresholdConfig defaultValue)
Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> skew_thresholds = 1;
Name | Description |
key | String |
defaultValue | ThresholdConfig |
Type | Description |
ThresholdConfig |
getSkewThresholdsOrThrow(String key)
public abstract ThresholdConfig getSkewThresholdsOrThrow(String key)
Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
map<string, .google.cloud.aiplatform.v1.ThresholdConfig> skew_thresholds = 1;
Name | Description |
key | String |
Type | Description |
ThresholdConfig |