ImageMagick 가이드

이 가이드에서는 Cloud Functions, Google Cloud Vision API, ImageMagick을 사용하여 Cloud Storage 버킷에 업로드되는 이미지 중 불쾌감을 주는 이미지를 감지하고 이를 흐리게 처리하는 방법을 설명합니다.

목표

  • 저장소에서 트리거한 백그라운드 Cloud Functions를 배포합니다.
  • Cloud Vision API를 사용하여 폭력적인 콘텐츠 또는 성인 콘텐츠를 감지합니다.
  • ImageMagick을 사용하여 불쾌감을 주는 이미지를 흐리게 처리합니다.
  • 살점을 뜯어먹는 좀비 이미지를 업로드하여 해당 함수를 테스트합니다.

비용

이 가이드에서는 비용이 청구될 수 있는 다음과 같은 Cloud Platform 구성요소를 사용합니다.

  • Google Cloud Functions
  • Google Cloud Storage
  • Google Cloud Vision API

가격 계산기를 사용하여 예상 사용량을 기준으로 예상 비용을 산출합니다.

Cloud Platform 신규 사용자는 무료 체험판을 사용할 수 있습니다.

시작하기 전에

  1. Google 계정으로 로그인합니다.

    아직 계정이 없으면 새 계정을 등록하세요.

  2. Google Cloud Console의 프로젝트 선택기 페이지에서 Google Cloud 프로젝트를 선택하거나 만듭니다.

    프로젝트 선택기 페이지로 이동

  3. Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다. 프로젝트에 결제가 사용 설정되어 있는지 확인하는 방법을 알아보세요.

  4. Cloud Functions, Cloud Build, Cloud Storage, and Cloud Vision API를 사용 설정합니다.

    API 사용 설정

  5. Cloud SDK 설치 및 초기화
  6. Cloud SDK가 이미 설치되어 있으면 다음 명령어를 실행하여 업데이트하세요.

    gcloud components update
  7. 개발 환경을 준비합니다.

데이터 흐름 시각화

ImageMagick 가이드 애플리케이션의 데이터 흐름 단계는 다음과 같습니다.

  1. 이미지가 Cloud Storage 버킷에 업로드됩니다.
  2. Cloud 함수는 Cloud Vision API를 사용하여 해당 이미지를 분석합니다.
  3. 폭력적인 콘텐츠 또는 성인 콘텐츠가 감지될 경우 Cloud 함수는 ImageMagick을 사용하여 해당 이미지를 흐리게 처리합니다.
  4. 흐리게 처리된 이미지는 다른 Cloud Storage 버킷에 업로드되어 사용됩니다.

애플리케이션 준비

  1. 이미지를 업로드할 Cloud Storage 버킷을 만듭니다. YOUR_INPUT_BUCKET_NAME은 전역적으로 고유한 버킷 이름입니다.

    gsutil mb gs://YOUR_INPUT_BUCKET_NAME
    
  2. 흐리게 처리된 이미지를 수신할 Cloud Storage 버킷을 만듭니다. YOUR_OUTPUT_BUCKET_NAME은 전역적으로 고유한 버킷 이름입니다.

    gsutil mb gs://YOUR_OUTPUT_BUCKET_NAME
    
  3. 샘플 앱 저장소를 로컬 머신에 클론합니다.

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    또는 zip 파일로 샘플을 다운로드하고 압축을 풀 수 있습니다.

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    또는 zip 파일로 샘플을 다운로드하고 압축을 풀 수 있습니다.

    Go

    git clone https://github.com/GoogleCloudPlatform/golang-samples.git

    또는 zip 파일로 샘플을 다운로드하고 압축을 풀 수 있습니다.

    자바

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    또는 zip 파일로 샘플을 다운로드하고 압축을 풀 수 있습니다.

    C#

    git clone https://github.com/GoogleCloudPlatform/dotnet-docs-samples.git

    또는 zip 파일로 샘플을 다운로드하고 압축을 풀 수 있습니다.

  4. Cloud Functions 샘플 코드가 있는 디렉터리로 변경합니다.

    Node.js

    cd nodejs-docs-samples/functions/imagemagick/

    Python

    cd python-docs-samples/functions/imagemagick/

    Go

    cd golang-samples/functions/imagemagick/

    자바

    cd java-docs-samples/functions/imagemagick/

    C#

    cd dotnet-docs-samples/functions/imagemagick/

코드 이해하기

종속 항목 가져오기

애플리케이션은 Google Cloud Platform 서비스, ImageMagick, 파일 시스템과 상호 작용하기 위해 몇 가지 종속 항목을 가져와야 합니다.

Node.js

const gm = require('gm').subClass({imageMagick: true});
const fs = require('fs');
const {promisify} = require('util');
const path = require('path');
const vision = require('@google-cloud/vision');

const {Storage} = require('@google-cloud/storage');
const storage = new Storage();
const client = new vision.ImageAnnotatorClient();

const {BLURRED_BUCKET_NAME} = process.env;

Python

import os
import tempfile

from google.cloud import storage, vision
from wand.image import Image

storage_client = storage.Client()
vision_client = vision.ImageAnnotatorClient()

Go


// Package imagemagick contains an example of using ImageMagick to process a
// file uploaded to Cloud Storage.
package imagemagick

import (
	"context"
	"errors"
	"fmt"
	"log"
	"os"
	"os/exec"

	"cloud.google.com/go/storage"
	vision "cloud.google.com/go/vision/apiv1"
	visionpb "google.golang.org/genproto/googleapis/cloud/vision/v1"
)

// Global API clients used across function invocations.
var (
	storageClient *storage.Client
	visionClient  *vision.ImageAnnotatorClient
)

func init() {
	// Declare a separate err variable to avoid shadowing the client variables.
	var err error

	storageClient, err = storage.NewClient(context.Background())
	if err != nil {
		log.Fatalf("storage.NewClient: %v", err)
	}

	visionClient, err = vision.NewImageAnnotatorClient(context.Background())
	if err != nil {
		log.Fatalf("vision.NewAnnotatorClient: %v", err)
	}
}

자바


import com.google.cloud.functions.BackgroundFunction;
import com.google.cloud.functions.Context;
import com.google.cloud.storage.Blob;
import com.google.cloud.storage.BlobId;
import com.google.cloud.storage.BlobInfo;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.SafeSearchAnnotation;
import functions.eventpojos.GcsEvent;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

public class ImageMagick implements BackgroundFunction<GcsEvent> {

  private static Storage storage = StorageOptions.getDefaultInstance().getService();
  private static final String BLURRED_BUCKET_NAME = System.getenv("BLURRED_BUCKET_NAME");
  private static final Logger logger = Logger.getLogger(ImageMagick.class.getName());
}

C#

using CloudNative.CloudEvents;
using Google.Cloud.Functions.Framework;
using Google.Cloud.Functions.Hosting;
using Google.Cloud.Storage.V1;
using Google.Cloud.Vision.V1;
using Google.Events.Protobuf.Cloud.Storage.V1;
using Grpc.Core;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using System;
using System.Diagnostics;
using System.IO;
using System.Threading;
using System.Threading.Tasks;

namespace ImageMagick
{
    // Dependency injection configuration, executed during server startup.
    public class Startup : FunctionsStartup
    {
        public override void ConfigureServices(WebHostBuilderContext context, IServiceCollection services) =>
            services
                .AddSingleton(ImageAnnotatorClient.Create())
                .AddSingleton(StorageClient.Create());
    }

    [FunctionsStartup(typeof(Startup))]
    public class Function : ICloudEventFunction<StorageObjectData>
    {
        /// <summary>
        /// The bucket to store blurred images in. An alternative to using environment variables here would be to
        /// fetch it from IConfiguration.
        /// </summary>
        private static readonly string s_blurredBucketName = Environment.GetEnvironmentVariable("BLURRED_BUCKET_NAME");

        private readonly ImageAnnotatorClient _visionClient;
        private readonly StorageClient _storageClient;
        private readonly ILogger _logger;

        public Function(ImageAnnotatorClient visionClient, StorageClient storageClient, ILogger<Function> logger) =>
            (_visionClient, _storageClient, _logger) = (visionClient, storageClient, logger);

    }
}

이미지 분석

다음 함수는 이미지를 저장하기 위해 만든 Cloud Storage 버킷에 이미지가 업로드될 때 호출됩니다. 해당 함수는 Cloud Vision API를 사용하여 업로드된 이미지에서 폭력적인 콘텐츠 또는 성인 콘텐츠를 감지합니다.

Node.js

// Blurs uploaded images that are flagged as Adult or Violence.
exports.blurOffensiveImages = async event => {
  // This event represents the triggering Cloud Storage object.
  const object = event;

  const file = storage.bucket(object.bucket).file(object.name);
  const filePath = `gs://${object.bucket}/${object.name}`;

  console.log(`Analyzing ${file.name}.`);

  try {
    const [result] = await client.safeSearchDetection(filePath);
    const detections = result.safeSearchAnnotation || {};

    if (
      // Levels are defined in https://cloud.google.com/vision/docs/reference/rest/v1/AnnotateImageResponse#likelihood
      detections.adult === 'VERY_LIKELY' ||
      detections.violence === 'VERY_LIKELY'
    ) {
      console.log(`Detected ${file.name} as inappropriate.`);
      return await blurImage(file, BLURRED_BUCKET_NAME);
    } else {
      console.log(`Detected ${file.name} as OK.`);
    }
  } catch (err) {
    console.error(`Failed to analyze ${file.name}.`, err);
    throw err;
  }
};

Python

# Blurs uploaded images that are flagged as Adult or Violence.
def blur_offensive_images(data, context):
    file_data = data

    file_name = file_data["name"]
    bucket_name = file_data["bucket"]

    blob = storage_client.bucket(bucket_name).get_blob(file_name)
    blob_uri = f"gs://{bucket_name}/{file_name}"
    blob_source = vision.Image(source=vision.ImageSource(gcs_image_uri=blob_uri))

    # Ignore already-blurred files
    if file_name.startswith("blurred-"):
        print(f"The image {file_name} is already blurred.")
        return

    print(f"Analyzing {file_name}.")

    result = vision_client.safe_search_detection(image=blob_source)
    detected = result.safe_search_annotation

    # Process image
    if detected.adult == 5 or detected.violence == 5:
        print(f"The image {file_name} was detected as inappropriate.")
        return __blur_image(blob)
    else:
        print(f"The image {file_name} was detected as OK.")

Go


// GCSEvent is the payload of a GCS event.
type GCSEvent struct {
	Bucket string `json:"bucket"`
	Name   string `json:"name"`
}

// BlurOffensiveImages blurs offensive images uploaded to GCS.
func BlurOffensiveImages(ctx context.Context, e GCSEvent) error {
	outputBucket := os.Getenv("BLURRED_BUCKET_NAME")
	if outputBucket == "" {
		return errors.New("BLURRED_BUCKET_NAME must be set")
	}

	img := vision.NewImageFromURI(fmt.Sprintf("gs://%s/%s", e.Bucket, e.Name))

	resp, err := visionClient.DetectSafeSearch(ctx, img, nil)
	if err != nil {
		return fmt.Errorf("AnnotateImage: %v", err)
	}

	if resp.GetAdult() == visionpb.Likelihood_VERY_LIKELY ||
		resp.GetViolence() == visionpb.Likelihood_VERY_LIKELY {
		return blur(ctx, e.Bucket, outputBucket, e.Name)
	}
	log.Printf("The image %q was detected as OK.", e.Name)
	return nil
}

자바

@Override
// Blurs uploaded images that are flagged as Adult or Violence.
public void accept(GcsEvent gcsEvent, Context context) {
  // Validate parameters
  if (gcsEvent.getBucket() == null || gcsEvent.getName() == null) {
    logger.severe("Error: Malformed GCS event.");
    return;
  }

  BlobInfo blobInfo = BlobInfo.newBuilder(gcsEvent.getBucket(), gcsEvent.getName()).build();

  // Construct URI to GCS bucket and file.
  String gcsPath = String.format("gs://%s/%s", gcsEvent.getBucket(), gcsEvent.getName());
  logger.info(String.format("Analyzing %s", gcsEvent.getName()));

  // Construct request.
  ImageSource imgSource = ImageSource.newBuilder().setImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();
  Feature feature = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feature).setImage(img).build();
  List<AnnotateImageRequest> requests = List.of(request);

  // Send request to the Vision API.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();
    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        logger.info(String.format("Error: %s", res.getError().getMessage()));
        return;
      }
      // Get Safe Search Annotations
      SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
      if (annotation.getAdultValue() == 5 || annotation.getViolenceValue() == 5) {
        logger.info(String.format("Detected %s as inappropriate.", gcsEvent.getName()));
        blur(blobInfo);
      } else {
        logger.info(String.format("Detected %s as OK.", gcsEvent.getName()));
      }
    }
  } catch (IOException e) {
    logger.log(Level.SEVERE, "Error with Vision API: " + e.getMessage(), e);
  }
}

C#

public async Task HandleAsync(CloudEvent cloudEvent, StorageObjectData data, CancellationToken cancellationToken)
{
    // Validate parameters
    if (data.Bucket is null || data.Name is null)
    {
        _logger.LogError("Malformed GCS event.");
        return;
    }

    // Construct URI to GCS bucket and file.
    string gcsUri = $"gs://{data.Bucket}/{data.Name}";
    _logger.LogInformation("Analyzing {uri}", gcsUri);

    // Perform safe search detection using the Vision API.
    Image image = Image.FromUri(gcsUri);
    SafeSearchAnnotation annotation;
    try
    {
        annotation = await _visionClient.DetectSafeSearchAsync(image);
    }
    // If the call to the Vision API fails, log the error but let the function complete normally.
    // If the exceptions weren't caught (and just propagated) the event would be retried.
    // See the "Best Practices" section in the documentation for more details about retry.
    catch (AnnotateImageException e)
    {
        _logger.LogError(e, "Vision API reported an error while performing safe search detection");
        return;
    }
    catch (RpcException e)
    {
        _logger.LogError(e, "Error communicating with the Vision API");
        return;
    }

    if (annotation.Adult == Likelihood.VeryLikely || annotation.Violence == Likelihood.VeryLikely)
    {
        _logger.LogInformation("Detected {uri} as inappropriate.", gcsUri);
        await BlurImageAsync(data, cancellationToken);
    }
    else
    {
        _logger.LogInformation("Detected {uri} as OK.", gcsUri);
    }
}

이미지 흐리게 처리하기

업로드된 이미지에서 폭력적인 콘텐츠나 성인 콘텐츠가 감지되면 다음 함수가 호출됩니다. 해당 함수는 불쾌감을 주는 이미지를 다운로드하고 ImageMagick을 사용하여 이미지를 흐리게 처리한 다음, 해당 이미지를 업로드하여 원본 이미지를 덮어씁니다.

Node.js

// Blurs the given file using ImageMagick, and uploads it to another bucket.
const blurImage = async (file, blurredBucketName) => {
  const tempLocalPath = `/tmp/${path.parse(file.name).base}`;

  // Download file from bucket.
  try {
    await file.download({destination: tempLocalPath});

    console.log(`Downloaded ${file.name} to ${tempLocalPath}.`);
  } catch (err) {
    throw new Error(`File download failed: ${err}`);
  }

  await new Promise((resolve, reject) => {
    gm(tempLocalPath)
      .blur(0, 16)
      .write(tempLocalPath, (err, stdout) => {
        if (err) {
          console.error('Failed to blur image.', err);
          reject(err);
        } else {
          console.log(`Blurred image: ${file.name}`);
          resolve(stdout);
        }
      });
  });

  // Upload result to a different bucket, to avoid re-triggering this function.
  const blurredBucket = storage.bucket(blurredBucketName);

  // Upload the Blurred image back into the bucket.
  const gcsPath = `gs://${blurredBucketName}/${file.name}`;
  try {
    await blurredBucket.upload(tempLocalPath, {destination: file.name});
    console.log(`Uploaded blurred image to: ${gcsPath}`);
  } catch (err) {
    throw new Error(`Unable to upload blurred image to ${gcsPath}: ${err}`);
  }

  // Delete the temporary file.
  const unlink = promisify(fs.unlink);
  return unlink(tempLocalPath);
};

Python

# Blurs the given file using ImageMagick.
def __blur_image(current_blob):
    file_name = current_blob.name
    _, temp_local_filename = tempfile.mkstemp()

    # Download file from bucket.
    current_blob.download_to_filename(temp_local_filename)
    print(f"Image {file_name} was downloaded to {temp_local_filename}.")

    # Blur the image using ImageMagick.
    with Image(filename=temp_local_filename) as image:
        image.resize(*image.size, blur=16, filter="hamming")
        image.save(filename=temp_local_filename)

    print(f"Image {file_name} was blurred.")

    # Upload result to a second bucket, to avoid re-triggering the function.
    # You could instead re-upload it to the same bucket + tell your function
    # to ignore files marked as blurred (e.g. those with a "blurred" prefix)
    blur_bucket_name = os.getenv("BLURRED_BUCKET_NAME")
    blur_bucket = storage_client.bucket(blur_bucket_name)
    new_blob = blur_bucket.blob(file_name)
    new_blob.upload_from_filename(temp_local_filename)
    print(f"Blurred image uploaded to: gs://{blur_bucket_name}/{file_name}")

    # Delete the temporary file.
    os.remove(temp_local_filename)

Go


// blur blurs the image stored at gs://inputBucket/name and stores the result in
// gs://outputBucket/name.
func blur(ctx context.Context, inputBucket, outputBucket, name string) error {
	inputBlob := storageClient.Bucket(inputBucket).Object(name)
	r, err := inputBlob.NewReader(ctx)
	if err != nil {
		return fmt.Errorf("NewReader: %v", err)
	}

	outputBlob := storageClient.Bucket(outputBucket).Object(name)
	w := outputBlob.NewWriter(ctx)
	defer w.Close()

	// Use - as input and output to use stdin and stdout.
	cmd := exec.Command("convert", "-", "-blur", "0x8", "-")
	cmd.Stdin = r
	cmd.Stdout = w

	if err := cmd.Run(); err != nil {
		return fmt.Errorf("cmd.Run: %v", err)
	}

	log.Printf("Blurred image uploaded to gs://%s/%s", outputBlob.BucketName(), outputBlob.ObjectName())

	return nil
}

자바

// Blurs the file described by blobInfo using ImageMagick,
// and uploads it to the blurred bucket.
private static void blur(BlobInfo blobInfo) throws IOException {
  String bucketName = blobInfo.getBucket();
  String fileName = blobInfo.getName();

  // Download image
  Blob blob = storage.get(BlobId.of(bucketName, fileName));
  Path download = Paths.get("/tmp/", fileName);
  blob.downloadTo(download);

  // Construct the command.
  Path upload = Paths.get("/tmp/", "blurred-" + fileName);
  List<String> args = List.of("convert", download.toString(), "-blur", "0x8", upload.toString());
  try {
    ProcessBuilder pb = new ProcessBuilder(args);
    Process process = pb.start();
    process.waitFor();
  } catch (Exception e) {
    logger.info(String.format("Error: %s", e.getMessage()));
  }

  // Upload image to blurred bucket.
  BlobId blurredBlobId = BlobId.of(BLURRED_BUCKET_NAME, fileName);
  BlobInfo blurredBlobInfo =
      BlobInfo.newBuilder(blurredBlobId).setContentType(blob.getContentType()).build();

  byte[] blurredFile = Files.readAllBytes(upload);
  storage.create(blurredBlobInfo, blurredFile);
  logger.info(
      String.format("Blurred image uploaded to: gs://%s/%s", BLURRED_BUCKET_NAME, fileName));

  // Remove images from fileSystem
  Files.delete(download);
  Files.delete(upload);
}

C#

/// <summary>
/// Downloads the Storage object specified by <paramref name="data"/>,
/// blurs it using ImageMagick, and uploads it to the "blurred" bucket.
/// </summary>
private async Task BlurImageAsync(StorageObjectData data, CancellationToken cancellationToken)
{
    // Download image
    string originalImageFile = Path.GetTempFileName();
    using (Stream output = File.Create(originalImageFile))
    {
        await _storageClient.DownloadObjectAsync(data.Bucket, data.Name, output, cancellationToken: cancellationToken);
    }

    // Construct the ImageMagick command
    string blurredImageFile = Path.GetTempFileName();
    // Command-line arguments for ImageMagick.
    // Paths are wrapped in quotes in case they contain spaces.
    string arguments = $"\"{originalImageFile}\" -blur 0x8, \"{blurredImageFile}\"";

    // Run the ImageMagick command line tool ("convert").
    Process process = Process.Start("convert", arguments);
    // Process doesn't expose a way of asynchronously waiting for completion.
    // See https://stackoverflow.com/questions/470256 for examples of how
    // this can be achieved using events, but for the sake of brevity,
    // this sample just waits synchronously.
    process.WaitForExit();

    // If ImageMagick failed, log the error but complete normally to avoid retrying.
    if (process.ExitCode != 0)
    {
        _logger.LogError("ImageMagick exited with code {exitCode}", process.ExitCode);
        return;
    }

    // Upload image to blurred bucket.
    using (Stream input = File.OpenRead(blurredImageFile))
    {
        await _storageClient.UploadObjectAsync(
            s_blurredBucketName, data.Name, data.ContentType, input, cancellationToken: cancellationToken);
    }

    string uri = $"gs://{s_blurredBucketName}/{data.Name}";
    _logger.LogInformation("Blurred image uploaded to: {uri}", uri);

    // Remove images from the file system.
    File.Delete(originalImageFile);
    File.Delete(blurredImageFile);
}

함수 배포

  1. 스토리지 트리거를 사용하여 Cloud 함수를 배포하려면 샘플 코드가 포함된 디렉터리(또는 자바의 경우 pom.xml 파일)에서 다음 명령어를 실행합니다.

    Node.js

    gcloud functions deploy blurOffensiveImages \
    --runtime nodejs10 \
    --trigger-bucket YOUR_INPUT_BUCKET_NAME \
    --set-env-vars BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    --runtime 플래그에 다음 값을 사용하여 원하는 Node.js 버전을 지정할 수 있습니다.
    • nodejs10
    • nodejs12
    • nodejs14(공개 미리보기)

    Python

    gcloud functions deploy blur_offensive_images \
    --runtime python38 \
    --trigger-bucket YOUR_INPUT_BUCKET_NAME \
    --set-env-vars BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    --runtime 플래그에 다음 값을 사용하여 선호하는 Python 버전을 지정할 수 있습니다.
    • python37
    • python38
    • python39(공개 미리보기)

    Go

    gcloud functions deploy BlurOffensiveImages \
    --runtime go113 \
    --trigger-bucket YOUR_INPUT_BUCKET_NAME \
    --set-env-vars BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    --runtime 플래그에 다음 값을 사용하여 원하는 Go 버전을 지정할 수 있습니다.
    • go111
    • go113

    자바

    gcloud functions deploy java-blur-function \
    --entry-point functions.ImageMagick \
    --runtime java11 \
    --memory 512MB \
    --trigger-bucket YOUR_INPUT_BUCKET_NAME \
    --set-env-vars BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME

    C#

    gcloud functions deploy csharp-blur-function \
    --entry-point ImageMagick.Function \
    --runtime dotnet3 \
    --trigger-bucket YOUR_INPUT_BUCKET_NAME \
    --set-env-vars BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME

    여기서 YOUR_INPUT_BUCKET_NAME은 이미지를 업로드할 Cloud Storage 버킷의 이름이고 YOUR_OUTPUT_BUCKET_NAME은 흐리게 처리된 이미지를 저장할 버킷의 이름입니다.

    --allow-unauthenticated 플래그를 사용하면 인증 없이 함수에 도달할 수 있습니다. 인증을 요청하려면 플래그를 생략합니다.

이미지 업로드

  1. 살점을 뜯어먹는 좀비와 같은 불쾌감을 주는 이미지를 업로드합니다.

    gsutil cp zombie.jpg gs://YOUR_INPUT_BUCKET_NAME
    

    여기서, YOUR_INPUT_BUCKET_NAME은 이미지를 업로드하기 위해 앞서 만든 Cloud Storage 버킷입니다.

  2. 로그를 확인하여 실행이 완료되었는지 확인합니다.

    gcloud functions logs read --limit 100
    
  3. 앞에서 만든 YOUR_OUTPUT_BUCKET_NAME Cloud Storage 버킷에서 흐리게 처리된 이미지를 확인할 수 있습니다.

삭제

이 가이드에서 사용된 리소스 비용이 Google Cloud 계정에 청구되지 않도록 하려면 리소스가 포함된 프로젝트를 삭제하거나 프로젝트를 유지하고 개별 리소스를 삭제하세요.

프로젝트 삭제

비용이 청구되지 않도록 하는 가장 쉬운 방법은 가이드에서 만든 프로젝트를 삭제하는 것입니다.

프로젝트를 삭제하려면 다음 안내를 따르세요.

  1. Cloud Console에서 리소스 관리 페이지로 이동합니다.

    리소스 관리로 이동

  2. 프로젝트 목록에서 삭제할 프로젝트를 선택하고 삭제를 클릭합니다.
  3. 대화상자에서 프로젝트 ID를 입력한 후 종료를 클릭하여 프로젝트를 삭제합니다.

Cloud 함수 삭제

Cloud Functions를 삭제해도 Cloud Storage에 저장된 리소스는 삭제되지 않습니다.

이 가이드에서 배포한 Cloud 함수를 삭제하려면 다음 명령어를 실행합니다.

Node.js

gcloud functions delete blurOffensiveImages 

Python

gcloud functions delete blur_offensive_images 

Go

gcloud functions delete BlurOffensiveImages 

자바

gcloud functions delete java-blur-function 

C#

gcloud functions delete csharp-blur-function 

Google Cloud Console에서 Cloud Functions를 삭제할 수도 있습니다.