Modèle Cloud Storage vers BigQuery

Utilisez le modèle "Serverless pour Apache Spark Cloud Storage vers BigQuery" pour extraire des données de Cloud Storage vers BigQuery.

Utiliser le modèle

Exécutez le modèle à l'aide de la gcloud CLI ou de l'API Dataproc.

gcloud

Avant d'utiliser les données de la commande ci-dessous, effectuez les remplacements suivants :

  • PROJECT_ID : valeur obligatoire. L'ID de votre projet Google Cloud est indiqué dans les paramètres IAM.
  • REGION : valeur obligatoire. Région Compute Engine.
  • TEMPLATE_VERSION : valeur obligatoire. Spécifiez latest pour la dernière version du modèle ou la date d'une version spécifique, par exemple 2023-03-17_v0.1.0-beta (consultez gs://dataproc-templates-binaries ou exécutez gcloud storage ls gs://dataproc-templates-binaries pour lister les versions de modèle disponibles).
  • CLOUD_STORAGE_PATH : valeur obligatoire. Chemin d'accès Cloud Storage source.

    Exemple gs://dataproc-templates/hive_to_cloud_storage_output"

  • FORMAT : valeur obligatoire. Format des données d'entrée. Options : avro, parquet, csv ou json. Remarque : Si la valeur est avro, vous devez ajouter "file:///usr/lib/spark/connector/spark-avro.jar" à l'option jars de gcloud CLI ou au champ de l'API.

    Exemple (le préfixe file:// fait référence à un fichier JAR Serverless pour Apache Spark) :

    --jars=file:///usr/lib/spark/connector/spark-avro.jar, [, ... autres fichiers JAR]
  • DATASET : valeur obligatoire. Ensemble de données BigQuery de destination.
  • TABLE : valeur obligatoire. Table BigQuery de destination.
  • TEMP_BUCKET : valeur obligatoire. Bucket Cloud Storage temporaire utilisé pour la préproduction des données avant leur chargement dans BigQuery.
  • SUBNET : facultatif. Si aucun sous-réseau n'est spécifié, le sous-réseau de la RÉGION spécifiée dans le réseau default est sélectionné.

    Exemple projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • TEMPVIEW et SQL_QUERY : facultatifs. Vous pouvez utiliser ces deux paramètres facultatifs pour appliquer une transformation SparkSQL lors du chargement des données dans BigQuery. TEMPVIEW est le nom de la vue temporaire et SQL_QUERY est l'instruction de requête. TEMPVIEW et le nom de la table dans SQL_QUERY doivent correspondre.
  • SERVICE_ACCOUNT : facultatif. Si aucune valeur n'est fournie, le compte de service Compute Engine par défaut est utilisé.
  • PROPERTY et PROPERTY_VALUE : facultatifs. Liste de paires propriété Spark=value séparées par une virgule.
  • LABEL et LABEL_VALUE : facultatifs. Liste de paires label=value séparées par une virgule.
  • LOG_LEVEL : facultatif. Niveau de journalisation. Il peut s'agir de ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE ou WARN. Par défaut : INFO.
  • KMS_KEY : facultatif. Clé Cloud Key Management Service à utiliser pour le chiffrement. Si aucune clé n'est spécifiée, les données sont chiffrées au repos à l'aide d'une clé Google-owned and Google-managed encryption key.

    Exemple projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

Exécutez la commande suivante :

Linux, macOS ou Cloud Shell

gcloud dataproc batches submit spark \
    --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \
    --version="1.2" \
    --project="PROJECT_ID" \
    --region="REGION" \
    --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" \
    --subnet="SUBNET" \
    --kms-key="KMS_KEY" \
    --service-account="SERVICE_ACCOUNT" \
    --properties="PROPERTY=PROPERTY_VALUE" \
    --labels="LABEL=LABEL_VALUE" \
    -- --template=GCSTOBIGQUERY \
    --templateProperty log.level="LOG_LEVEL" \
    --templateProperty project.id="PROJECT_ID" \
    --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" \
    --templateProperty gcs.bigquery.input.format="FORMAT" \
    --templateProperty gcs.bigquery.output.dataset="DATASET" \
    --templateProperty gcs.bigquery.output.table="TABLE" \
    --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" \
    --templateProperty gcs.bigquery.temp.table="TEMPVIEW" \
    --templateProperty gcs.bigquery.temp.query="SQL_QUERY"

Windows (PowerShell)

gcloud dataproc batches submit spark `
    --class=com.google.cloud.dataproc.templates.main.DataProcTemplate `
    --version="1.2" `
    --project="PROJECT_ID" `
    --region="REGION" `
    --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" `
    --subnet="SUBNET" `
    --kms-key="KMS_KEY" `
    --service-account="SERVICE_ACCOUNT" `
    --properties="PROPERTY=PROPERTY_VALUE" `
    --labels="LABEL=LABEL_VALUE" `
    -- --template=GCSTOBIGQUERY `
    --templateProperty log.level="LOG_LEVEL" `
    --templateProperty project.id="PROJECT_ID" `
    --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" `
    --templateProperty gcs.bigquery.input.format="FORMAT" `
    --templateProperty gcs.bigquery.output.dataset="DATASET" `
    --templateProperty gcs.bigquery.output.table="TABLE" `
    --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" `
    --templateProperty gcs.bigquery.temp.table="TEMPVIEW" `
    --templateProperty gcs.bigquery.temp.query="SQL_QUERY"

Windows (cmd.exe)

gcloud dataproc batches submit spark ^
    --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^
    --version="1.2" ^
    --project="PROJECT_ID" ^
    --region="REGION" ^
    --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ^
    --subnet="SUBNET" ^
    --kms-key="KMS_KEY" ^
    --service-account="SERVICE_ACCOUNT" ^
    --properties="PROPERTY=PROPERTY_VALUE" ^
    --labels="LABEL=LABEL_VALUE" ^
    -- --template=GCSTOBIGQUERY ^
    --templateProperty log.level="LOG_LEVEL" ^
    --templateProperty project.id="PROJECT_ID" ^
    --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" ^
    --templateProperty gcs.bigquery.input.format="FORMAT" ^
    --templateProperty gcs.bigquery.output.dataset="DATASET" ^
    --templateProperty gcs.bigquery.output.table="TABLE" ^
    --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" ^
    --templateProperty gcs.bigquery.temp.table="TEMPVIEW" ^
    --templateProperty gcs.bigquery.temp.query="SQL_QUERY"

REST

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • PROJECT_ID : valeur obligatoire. L'ID de votre projet Google Cloud est indiqué dans les paramètres IAM.
  • REGION : valeur obligatoire. Région Compute Engine.
  • TEMPLATE_VERSION : valeur obligatoire. Spécifiez latest pour la dernière version du modèle ou la date d'une version spécifique, par exemple 2023-03-17_v0.1.0-beta (consultez gs://dataproc-templates-binaries ou exécutez gcloud storage ls gs://dataproc-templates-binaries pour lister les versions de modèle disponibles).
  • CLOUD_STORAGE_PATH : valeur obligatoire. Chemin d'accès Cloud Storage source.

    Exemple gs://dataproc-templates/hive_to_cloud_storage_output"

  • FORMAT : valeur obligatoire. Format des données d'entrée. Options : avro, parquet, csv ou json. Remarque : Si la valeur est avro, vous devez ajouter "file:///usr/lib/spark/connector/spark-avro.jar" à l'option jars de gcloud CLI ou au champ de l'API.

    Exemple (le préfixe file:// fait référence à un fichier JAR Serverless pour Apache Spark) :

    --jars=file:///usr/lib/spark/connector/spark-avro.jar, [, ... autres fichiers JAR]
  • DATASET : valeur obligatoire. Ensemble de données BigQuery de destination.
  • TABLE : valeur obligatoire. Table BigQuery de destination.
  • TEMP_BUCKET : valeur obligatoire. Bucket Cloud Storage temporaire utilisé pour la préproduction des données avant leur chargement dans BigQuery.
  • SUBNET : facultatif. Si aucun sous-réseau n'est spécifié, le sous-réseau de la RÉGION spécifiée dans le réseau default est sélectionné.

    Exemple projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • TEMPVIEW et SQL_QUERY : facultatifs. Vous pouvez utiliser ces deux paramètres facultatifs pour appliquer une transformation SparkSQL lors du chargement des données dans BigQuery. TEMPVIEW est le nom de la vue temporaire et SQL_QUERY est l'instruction de requête. TEMPVIEW et le nom de la table dans SQL_QUERY doivent correspondre.
  • SERVICE_ACCOUNT : facultatif. Si aucune valeur n'est fournie, le compte de service Compute Engine par défaut est utilisé.
  • PROPERTY et PROPERTY_VALUE : facultatifs. Liste de paires propriété Spark=value séparées par une virgule.
  • LABEL et LABEL_VALUE : facultatifs. Liste de paires label=value séparées par une virgule.
  • LOG_LEVEL : facultatif. Niveau de journalisation. Il peut s'agir de ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE ou WARN. Par défaut : INFO.
  • KMS_KEY : facultatif. Clé Cloud Key Management Service à utiliser pour le chiffrement. Si aucune clé n'est spécifiée, les données sont chiffrées au repos à l'aide d'une clé Google-owned and Google-managed encryption key.

    Exemple projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

Méthode HTTP et URL :

POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches

Corps JSON de la requête :


{
  "environmentConfig":{
    "executionConfig":{
      "subnetworkUri":"SUBNET",
      "kmsKey": "KMS_KEY",
      "serviceAccount": "SERVICE_ACCOUNT"
    }
  },
  "labels": {
    "LABEL": "LABEL_VALUE"
  },
  "runtimeConfig": {
    "version": "1.2",
    "properties": {
      "PROPERTY": "PROPERTY_VALUE"
    }
  },
  "sparkBatch":{
    "mainClass":"com.google.cloud.dataproc.templates.main.DataProcTemplate",
    "args":[
      "--template", "GCSTOBIGQUERY",
      "--templateProperty","log.level=LOG_LEVEL",
      "--templateProperty","project.id=PROJECT_ID",
      "--templateProperty","gcs.bigquery.input.location=CLOUD_STORAGE_PATH",
      "--templateProperty","gcs.bigquery.input.format=FORMAT",
      "--templateProperty","gcs.bigquery.output.dataset=DATASET",
      "--templateProperty","gcs.bigquery.output.table=TABLE",
      "--templateProperty","gcs.bigquery.temp.bucket.name=TEMP_BUCKET",
      "--templateProperty","gcs.bigquery.temp.table=TEMPVIEW",
      "--templateProperty","gcs.bigquery.temp.query=SQL_QUERY"
    ],
    "jarFileUris":[
      "file:///usr/lib/spark/connector/spark-avro.jar", "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar"
    ]
  }
}

Pour envoyer votre requête, développez l'une des options suivantes :

Vous devriez recevoir une réponse JSON de ce type :


{
  "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata",
    "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID",
    "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583",
    "createTime": "2023-02-24T03:31:03.440329Z",
    "operationType": "BATCH",
    "description": "Batch"
  }
}