Plantilla de JDBC a BigQuery
Usa la plantilla de JDBC a BigQuery de Dataproc sin servidor para extraer datos de bases de datos JDBC a BigQuery.
Esta plantilla admite las siguientes bases de datos como entrada:
- MySQL
- PostgreSQL
- Microsoft SQL Server
- Oracle
Usa la plantilla
Ejecuta la plantilla con la CLI de gcloud o la API de Dataproc.
gcloud
Antes de usar cualquiera de los datos de comando a continuación, realiza los siguientes reemplazos:
- PROJECT_ID: Obligatorio. El ID de tu proyecto de Google Cloud que aparece en la Configuración de IAM
- REGION: Obligatorio. Región de Compute Engine.
- TEMPLATE_VERSION: Obligatorio. Especifica
latest
para la versión más reciente de la plantilla o la fecha de una versión específica, por ejemplo,2023-03-17_v0.1.0-beta
(visita gs://dataproc-templates-binaries o ejecutagcloud storage ls gs://dataproc-templates-binaries
para ver una lista de las versiones de plantilla disponibles). - SUBNET: Opcional Si no se especifica una subred, esta
en la REGION especificada en la red
default
.Ejemplo:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Obligatorio. La versión completa de Cloud Storage
incluido el nombre del archivo, en el que se almacena el jar del conector de JDBC. Puedes usar los siguientes comandos para descargar
Conectores de JDBC para subir en Cloud Storage:
- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- SQL de Postgres:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- Microsoft SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
- DATASET y TABLE: Obligatorio. Conjunto de datos y tabla de BigQuery de destino.
- Las siguientes variables se usan para construir el JDBC_CONNECTION_URL requerido:
- JDBC_HOST
- JDBC_PORT
- JDBC_DATABASE, o, para Oracle, JDBC_SERVICE
- JDBC_USERNAME
- JDBC_PASSWORD
Crea el JDBC_CONNECTION_URL con uno de los siguientes formatos específicos del conector:
- MySQL:
jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- SQL de Postgres:
jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Microsoft SQL Server:
jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
- Oracle:
jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- DRIVER: Obligatorio. El controlador JDBC que se usará para la conexión:
- MySQL:
com.mysql.cj.jdbc.Driver
- SQL de Postgres:
org.postgresql.Driver
- Microsoft SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
- QUERY: Obligatorio. Consulta en SQL para extraer datos de JDBC.
- MODE: Obligatorio. Es el modo de escritura para el resultado de BigQuery.
Opciones:
append
,overwrite
,ignore
oerrorifexists
. - TEMP_BUCKET: Obligatorio. Cloud Storage
el nombre del bucket. Este bucket se usa para la carga de BigQuery.
Ejemplo:
gs://dataproc-templates/jdbc_to_cloud_storage_output
- INPUT_PARTITION_COLUMN,
LOWERBOUND,
UPPERBOUND,
PARTITIONS: Opcional. Si se usan, se deben especificar todos los siguientes parámetros:
- INPUT_PARTITION_COLUMN: Nombre de la columna de partición de tabla de entrada de JDBC
- LOWERBOUND: Es el límite inferior de la columna de partición de la tabla de entrada de JDBC que se usa para determinar el intervalo de partición.
- UPPERBOUND: Es el límite superior de la columna de partición de tabla de entrada de JDBC que se usa para decidir el segmento de la partición.
- PARTITIONS: Es la cantidad máxima de particiones que se pueden usar para el paralelismo de lecturas y escrituras de tablas.
Si se especifica, este valor se usa para la conexión de entrada y salida de JDBC. Predeterminado:
10
.
- FETCHSIZE: Opcional Indica cuántas filas se deben recuperar por ida y vuelta. Cantidad predeterminada: 10.
- TEMPVIEW y SQL_QUERY: opcional. Puedes usar estos dos parámetros opcionales para aplicar una transformación Spark SQL mientras cargas datos en BigQuery. TEMPVIEW es el nombre de la vista temporal y SQL_QUERY es la sentencia de consulta. TEMPVIEW y el nombre de la tabla en SQL_QUERY deben coincidir.
- SERVICE_ACCOUNT: Opcional Si no se proporciona, se usa la cuenta de servicio de Compute Engine predeterminada.
- PROPERTY y PROPERTY_VALUE:
Opcional. Lista de elementos separados por comas
Propiedad de Spark=
value
pares. - LABEL y LABEL_VALUE:
Opcional. Lista separada por comas de pares
label
=value
. - LOG_LEVEL: Opcional Nivel de registro. Puede ser uno de los siguientes:
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
oWARN
. Valor predeterminado:INFO
. -
KMS_KEY: Opcional La clave de Cloud Key Management Service que se usará en la encriptación. Si no se especifica una clave, los datos se encriptan en reposo con una clave de propiedad de Google y una administrada por Google.
Ejemplo:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
Ejecuta el siguiente comando:
Linux, macOS o Cloud Shell
gcloud dataproc batches submit spark \ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \ --version="1.1" \ --project="PROJECT_ID" \ --region="REGION" \ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" \ --subnet="SUBNET" \ --kms-key="KMS_KEY" \ --service-account="SERVICE_ACCOUNT" \ --properties="PROPERTY=PROPERTY_VALUE" \ --labels="LABEL=LABEL_VALUE" \ -- --template=JDBCTOBIGQUERY \ --templateProperty log.level="LOG_LEVEL" \ --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" \ --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" \ --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" \ --templateProperty jdbctobq.write.mode="MODE" \ --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" \ --templateProperty jdbctobq.sql="QUERY" \ --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" \ --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" \ --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" \ --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" \ --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" \ --templateProperty jdbctobq.temp.table="TEMPVIEW" \ --templateProperty jdbctobq.temp.query="SQL_QUERY"
Windows (PowerShell)
gcloud dataproc batches submit spark ` --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ` --version="1.1" ` --project="PROJECT_ID" ` --region="REGION" ` --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ` --subnet="SUBNET" ` --kms-key="KMS_KEY" ` --service-account="SERVICE_ACCOUNT" ` --properties="PROPERTY=PROPERTY_VALUE" ` --labels="LABEL=LABEL_VALUE" ` -- --template=JDBCTOBIGQUERY ` --templateProperty log.level="LOG_LEVEL" ` --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" ` --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" ` --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" ` --templateProperty jdbctobq.write.mode="MODE" ` --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" ` --templateProperty jdbctobq.sql="QUERY" ` --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" ` --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" ` --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" ` --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" ` --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" ` --templateProperty jdbctobq.temp.table="TEMPVIEW" ` --templateProperty jdbctobq.temp.query="SQL_QUERY"
Windows (cmd.exe)
gcloud dataproc batches submit spark ^ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^ --version="1.1" ^ --project="PROJECT_ID" ^ --region="REGION" ^ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ^ --subnet="SUBNET" ^ --kms-key="KMS_KEY" ^ --service-account="SERVICE_ACCOUNT" ^ --properties="PROPERTY=PROPERTY_VALUE" ^ --labels="LABEL=LABEL_VALUE" ^ -- --template=JDBCTOBIGQUERY ^ --templateProperty log.level="LOG_LEVEL" ^ --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" ^ --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" ^ --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" ^ --templateProperty jdbctobq.write.mode="MODE" ^ --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" ^ --templateProperty jdbctobq.sql="QUERY" ^ --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" ^ --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" ^ --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" ^ --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" ^ --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" ^ --templateProperty jdbctobq.temp.table="TEMPVIEW" ^ --templateProperty jdbctobq.temp.query="SQL_QUERY"
REST
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- PROJECT_ID: Obligatorio. El ID del proyecto de Google Cloud que aparece en la Configuración de IAM.
- REGION: Obligatorio. Región de Compute Engine.
- TEMPLATE_VERSION: Obligatorio. Especifica
latest
para la versión más reciente de la plantilla o la fecha de una versión específica, por ejemplo,2023-03-17_v0.1.0-beta
(visita gs://dataproc-templates-binaries o ejecutagcloud storage ls gs://dataproc-templates-binaries
para ver una lista de las versiones de plantilla disponibles). - SUBNET: Opcional Si no se especifica una subred, se selecciona la subred en la REGION especificada en la red
default
.Ejemplo:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Obligatorio. La versión completa de Cloud Storage
incluido el nombre del archivo, en el que se almacena el jar del conector de JDBC. Puedes usar los siguientes comandos para descargar
Conectores de JDBC para subir en Cloud Storage:
- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- SQL de Postgres:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- Microsoft SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
- DATASET y TABLE: Obligatorio. Conjunto de datos y tabla de BigQuery de destino.
- Las siguientes variables se usan para construir el JDBC_CONNECTION_URL requerido:
- JDBC_HOST
- JDBC_PORT
- JDBC_DATABASE, o, para Oracle, JDBC_SERVICE
- JDBC_USERNAME
- JDBC_PASSWORD
Crea el JDBC_CONNECTION_URL con uno de los siguientes formatos específicos del conector:
- MySQL:
jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- SQL de Postgres:
jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Microsoft SQL Server:
jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
- Oracle:
jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- DRIVER: Obligatorio. El controlador JDBC que se usará para la conexión:
- MySQL:
com.mysql.cj.jdbc.Driver
- SQL de Postgres:
org.postgresql.Driver
- Microsoft SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
- QUERY: Obligatorio. Consulta en SQL para extraer datos de JDBC.
- MODE: Obligatorio. Es el modo de escritura para el resultado de BigQuery.
Opciones:
append
,overwrite
,ignore
oerrorifexists
. - TEMP_BUCKET: Obligatorio. Cloud Storage
el nombre del bucket. Este bucket se usa para la carga de BigQuery.
Ejemplo:
gs://dataproc-templates/jdbc_to_cloud_storage_output
- INPUT_PARTITION_COLUMN,
LOWERBOUND,
UPPERBOUND,
PARTITIONS: Opcional. Si se usan, se deben especificar todos los siguientes parámetros:
- INPUT_PARTITION_COLUMN: Nombre de la columna de partición de tabla de entrada de JDBC
- LOWERBOUND: Es el límite inferior de la columna de partición de la tabla de entrada de JDBC que se usa para determinar el intervalo de partición.
- UPPERBOUND: Es el límite superior de la columna de partición de tabla de entrada de JDBC que se usa para decidir el segmento de la partición.
- PARTITIONS: Es la cantidad máxima de particiones que se pueden usar para el paralelismo de lecturas y escrituras de tablas.
Si se especifica, este valor se usa para la conexión de entrada y salida de JDBC. Predeterminado:
10
.
- FETCHSIZE: Opcional Indica cuántas filas se deben recuperar por ida y vuelta. Cantidad predeterminada: 10.
- TEMPVIEW y SQL_QUERY: opcional. Puedes usar estos dos parámetros opcionales para aplicar una transformación Spark SQL mientras cargas datos en BigQuery. TEMPVIEW es el nombre de la vista temporal y SQL_QUERY es la sentencia de consulta. TEMPVIEW y el nombre de la tabla en SQL_QUERY deben coincidir.
- SERVICE_ACCOUNT: Opcional Si no se proporciona, se usa la cuenta de servicio predeterminada de Compute Engine.
- PROPERTY y PROPERTY_VALUE: Opcional. Lista de elementos separados por comas
Propiedad de Spark=
value
pares. - LABEL y LABEL_VALUE:
Opcional. Lista separada por comas de pares
label
=value
. - LOG_LEVEL: Opcional Nivel de registro. Puede ser uno de los siguientes:
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
oWARN
. Valor predeterminado:INFO
. -
KMS_KEY: Opcional La clave de Cloud Key Management Service que se usará para la encriptación. Si no se especifica una clave, los datos se encriptan en reposo con una clave que es propiedad de Google y está administrada por Google.
Ejemplo:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
Método HTTP y URL:
POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches
Cuerpo JSON de la solicitud:
{ "environmentConfig": { "executionConfig": { "subnetworkUri": "SUBNET", "kmsKey": "KMS_KEY", "serviceAccount": "SERVICE_ACCOUNT" } }, "labels": { "LABEL": "LABEL_VALUE" }, "runtimeConfig": { "version": "1.1", "properties": { "PROPERTY": "PROPERTY_VALUE" } }, "sparkBatch": { "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate", "args": [ "--template","JDBCTOBIGQUERY", "--templateProperty","log.level=LOG_LEVEL", "--templateProperty","jdbctobq.bigquery.location=DATASET.TABLE", "--templateProperty","jdbctobq.jdbc.url=JDBC_CONNECTION_URL", "--templateProperty","jdbctobq.jdbc.driver.class.name=DRIVER", "--templateProperty","jdbctobq.sql=QUERY", "--templateProperty","jdbctobq.write.mode=MODE", "--templateProperty","jdbctobq.temp.gcs.bucket=TEMP_BUCKET", "--templateProperty","jdbctobq.sql.partitionColumn=INPUT_PARTITION_COLUMN", "--templateProperty","jdbctobq.sql.lowerBound=LOWERBOUND", "--templateProperty","jdbctobq.sql.upperBound=UPPERBOUND", "--templateProperty","jdbctobq.sql.numPartitions=PARTITIONS", "--templateProperty","jdbctobq.jdbc.fetchsize=FETCHSIZE" ], "jarFileUris": [ "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar","gs://JDBC_CONNECTOR_GCS_PATH" ] } }
Para enviar tu solicitud, expande una de estas opciones:
Deberías recibir una respuesta JSON similar a la que se muestra a continuación:
{ "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }