Bigtable to JSON template

The Bigtable to JSON template is a pipeline that reads data from a Bigtable table and writes it to a Cloud Storage bucket in the JSON format.

Pipeline requirements

  • The Bigtable table must exist.
  • The output Cloud Storage bucket must exist before you run the pipeline.

Template parameters

Required parameters

  • bigtableProjectId: The ID for the Google Cloud project that contains the Bigtable instance that you want to read data from.
  • bigtableInstanceId: The ID of the Bigtable instance that contains the table.
  • bigtableTableId: The ID of the Bigtable table to read from.
  • outputDirectory: The Cloud Storage path where the output JSON files are stored. For example, gs://your-bucket/your-path/.

Optional parameters

  • filenamePrefix: The prefix of the JSON file name. For example, table1-. If no value is provided, defaults to part.
  • userOption: Possible values are FLATTEN or NONE. FLATTEN flattens the row to the single level. NONE stores the whole row as a JSON string. Defaults to NONE.
  • columnsAliases: A comma-separated list of columns that are required for the Vertex AI Vector Search index. The columns id and embedding are required for Vertex AI Vector Search. You can use the notation fromfamily:fromcolumn;to. For example, if the columns are rowkey and cf:my_embedding, where rowkey has a different name than the embedding column, specify cf:my_embedding;embedding and, rowkey;id. Only use this option when the value for userOption is FLATTEN.
  • bigtableAppProfileId: The ID of the Bigtable application profile to use for the export. If you don't specify an app profile, Bigtable uses the instance's default app profile: https://cloud.google.com/bigtable/docs/app-profiles#default-app-profile.

Run the template

  1. Go to the Dataflow Create job from template page.
  2. Go to Create job from template
  3. In the Job name field, enter a unique job name.
  4. Optional: For Regional endpoint, select a value from the drop-down menu. The default region is us-central1.

    For a list of regions where you can run a Dataflow job, see Dataflow locations.

  5. From the Dataflow template drop-down menu, select the Bigtable to JSON template.
  6. In the provided parameter fields, enter your parameter values.
  7. Click Run job.

In your shell or terminal, run the template:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/Cloud_Bigtable_to_GCS_Json \
    --project=PROJECT_ID \
    --region=REGION_NAME \
    --parameters \
       bigtableProjectId=BIGTABLE_PROJECT_ID,\
       bigtableInstanceId=BIGTABLE_INSTANCE_ID,\
       bigtableTableId=BIGTABLE_TABLE_ID,\
       filenamePrefix=FILENAME_PREFIX,\

Replace the following:

  • JOB_NAME: a unique job name of your choice
  • VERSION: the version of the template that you want to use

    You can use the following values:

  • REGION_NAME: the region where you want to deploy your Dataflow job—for example, us-central1
  • BIGTABLE_PROJECT_ID: the Project ID
  • BIGTABLE_INSTANCE_ID: the Instance ID
  • BIGTABLE_TABLE_ID: the Table ID
  • FILENAME_PREFIX: the JSON file prefix

To run the template using the REST API, send an HTTP POST request. For more information on the API and its authorization scopes, see projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/Cloud_Bigtable_to_GCS_Json
{
   "jobName": "JOB_NAME",
   "parameters": {
     "bigtableProjectId": "BIGTABLE_PROJECT_ID",
     "bigtableInstanceId": "BIGTABLE_INSTANCE_ID",
     "bigtableTableId": "BIGTABLE_TABLE_ID",
     "filenamePrefix": "FILENAME_PREFIX",
   },
   "environment": { "maxWorkers": "10" }
}

Replace the following:

  • PROJECT_ID: the Google Cloud project ID where you want to run the Dataflow job
  • JOB_NAME: a unique job name of your choice
  • VERSION: the version of the template that you want to use

    You can use the following values:

  • LOCATION: the region where you want to deploy your Dataflow job—for example, us-central1
  • BIGTABLE_PROJECT_ID: the Project ID
  • BIGTABLE_INSTANCE_ID: the Instance ID
  • BIGTABLE_TABLE_ID: the Table ID
  • FILENAME_PREFIX: the JSON file prefix
Java
/*
 * Copyright (C) 2023 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package com.google.cloud.teleport.bigtable;

import com.google.bigtable.v2.Cell;
import com.google.bigtable.v2.Column;
import com.google.bigtable.v2.Family;
import com.google.bigtable.v2.Row;
import com.google.cloud.teleport.bigtable.BigtableToJson.Options;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.metadata.TemplateParameter;
import com.google.cloud.teleport.metadata.TemplateParameter.TemplateEnumOption;
import com.google.cloud.teleport.util.DualInputNestedValueProvider;
import com.google.cloud.teleport.util.DualInputNestedValueProvider.TranslatorInput;
import com.google.gson.stream.JsonWriter;
import java.io.IOException;
import java.io.StringWriter;
import java.util.HashMap;
import java.util.Map;
import org.apache.beam.runners.dataflow.options.DataflowPipelineOptions;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.io.FileSystems;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.io.fs.ResolveOptions.StandardResolveOptions;
import org.apache.beam.sdk.io.gcp.bigtable.BigtableIO;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.SerializableFunction;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Dataflow pipeline that exports data from a Cloud Bigtable table to JSON files in GCS. Currently,
 * filtering on Cloud Bigtable table is not supported.
 *
 * <p>Check out <a href=
 * "https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_Cloud_Bigtable_to_GCS_JSON.md">README</a>
 * for instructions on how to use or modify this template.
 */
@Template(
    name = "Cloud_Bigtable_to_GCS_Json",
    category = TemplateCategory.BATCH,
    displayName = "Cloud Bigtable to JSON",
    description =
        "The Bigtable to JSON template is a pipeline that reads data from a Bigtable table and writes it to a Cloud Storage bucket in JSON format",
    optionsClass = Options.class,
    documentation =
        "https://cloud.google.com/dataflow/docs/guides/templates/provided/bigtable-to-json",
    contactInformation = "https://cloud.google.com/support",
    requirements = {
      "The Bigtable table must exist.",
      "The output Cloud Storage bucket must exist before running the pipeline."
    })
public class BigtableToJson {
  private static final Logger LOG = LoggerFactory.getLogger(BigtableToJson.class);

  /** Options for the export pipeline. */
  public interface Options extends PipelineOptions {
    @TemplateParameter.ProjectId(
        order = 1,
        groupName = "Source",
        description = "Project ID",
        helpText =
            "The ID for the Google Cloud project that contains the Bigtable instance that you want to read data from.")
    ValueProvider<String> getBigtableProjectId();

    @SuppressWarnings("unused")
    void setBigtableProjectId(ValueProvider<String> projectId);

    @TemplateParameter.Text(
        order = 2,
        groupName = "Source",
        regexes = {"[a-z][a-z0-9\\-]+[a-z0-9]"},
        description = "Instance ID",
        helpText = "The ID of the Bigtable instance that contains the table.")
    ValueProvider<String> getBigtableInstanceId();

    @SuppressWarnings("unused")
    void setBigtableInstanceId(ValueProvider<String> instanceId);

    @TemplateParameter.Text(
        order = 3,
        groupName = "Source",
        regexes = {"[_a-zA-Z0-9][-_.a-zA-Z0-9]*"},
        description = "Table ID",
        helpText = "The ID of the Bigtable table to read from.")
    ValueProvider<String> getBigtableTableId();

    @SuppressWarnings("unused")
    void setBigtableTableId(ValueProvider<String> tableId);

    @TemplateParameter.GcsWriteFolder(
        order = 4,
        groupName = "Target",
        description = "Cloud Storage directory for storing JSON files",
        helpText = "The Cloud Storage path where the output JSON files are stored.",
        example = "gs://your-bucket/your-path/")
    @Required
    ValueProvider<String> getOutputDirectory();

    @SuppressWarnings("unused")
    void setOutputDirectory(ValueProvider<String> outputDirectory);

    @TemplateParameter.Text(
        order = 5,
        groupName = "Target",
        optional = true,
        description = "JSON file prefix",
        helpText =
            "The prefix of the JSON file name. For example, `table1-`. If no value is provided, defaults to `part`.")
    @Default.String("part")
    ValueProvider<String> getFilenamePrefix();

    @SuppressWarnings("unused")
    void setFilenamePrefix(ValueProvider<String> filenamePrefix);

    @TemplateParameter.Enum(
        order = 6,
        groupName = "Target",
        optional = true,
        enumOptions = {@TemplateEnumOption("FLATTEN"), @TemplateEnumOption("NONE")},
        description = "User option",
        helpText =
            "Possible values are `FLATTEN` or `NONE`. `FLATTEN` flattens the row to the single level. `NONE` stores the whole row as a JSON string. Defaults to `NONE`.")
    @Default.String("NONE")
    String getUserOption();

    @SuppressWarnings("unused")
    void setUserOption(String userOption);

    @TemplateParameter.Text(
        order = 7,
        groupName = "Target",
        optional = true,
        parentName = "userOption",
        parentTriggerValues = {"FLATTEN"},
        description = "Columns aliases",
        helpText =
            "A comma-separated list of columns that are required for the Vertex AI Vector Search index. The"
                + " columns `id` and `embedding` are required for Vertex AI Vector Search. You can use the notation"
                + " `fromfamily:fromcolumn;to`. For example, if the columns are `rowkey` and `cf:my_embedding`, where"
                + " `rowkey` has a different name than the embedding column, specify `cf:my_embedding;embedding` and,"
                + " `rowkey;id`. Only use this option when the value for `userOption` is `FLATTEN`.")
    ValueProvider<String> getColumnsAliases();

    @SuppressWarnings("unused")
    void setColumnsAliases(ValueProvider<String> value);

    @TemplateParameter.Text(
        order = 8,
        groupName = "Source",
        optional = true,
        regexes = {"[_a-zA-Z0-9][-_.a-zA-Z0-9]*"},
        description = "Application profile ID",
        helpText =
            "The ID of the Bigtable application profile to use for the export. If you don't specify an app profile, Bigtable uses the instance's default app profile: https://cloud.google.com/bigtable/docs/app-profiles#default-app-profile.")
    @Default.String("default")
    ValueProvider<String> getBigtableAppProfileId();

    @SuppressWarnings("unused")
    void setBigtableAppProfileId(ValueProvider<String> appProfileId);
  }

  /**
   * Runs a pipeline to export data from a Cloud Bigtable table to JSON files in GCS in JSON format.
   *
   * @param args arguments to the pipeline
   */
  public static void main(String[] args) {
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);

    PipelineResult result = run(options);

    // Wait for pipeline to finish only if it is not constructing a template.
    if (options.as(DataflowPipelineOptions.class).getTemplateLocation() == null) {
      result.waitUntilFinish();
    }
    LOG.info("Completed pipeline setup");
  }

  public static PipelineResult run(Options options) {
    Pipeline pipeline = Pipeline.create(PipelineUtils.tweakPipelineOptions(options));

    BigtableIO.Read read =
        BigtableIO.read()
            .withProjectId(options.getBigtableProjectId())
            .withInstanceId(options.getBigtableInstanceId())
            .withAppProfileId(options.getBigtableAppProfileId())
            .withTableId(options.getBigtableTableId());

    // Do not validate input fields if it is running as a template.
    if (options.as(DataflowPipelineOptions.class).getTemplateLocation() != null) {
      read = read.withoutValidation();
    }

    ValueProvider<String> filePathPrefix =
        DualInputNestedValueProvider.of(
            options.getOutputDirectory(),
            options.getFilenamePrefix(),
            new SerializableFunction<TranslatorInput<String, String>, String>() {
              @Override
              public String apply(TranslatorInput<String, String> input) {
                return FileSystems.matchNewResource(input.getX(), true)
                    .resolve(input.getY(), StandardResolveOptions.RESOLVE_FILE)
                    .toString();
              }
            });

    String userOption = options.getUserOption();
    pipeline
        .apply("Read from Bigtable", read)
        .apply(
            "Transform to JSON",
            MapElements.via(
                new BigtableToJsonFn(userOption.equals("FLATTEN"), options.getColumnsAliases())))
        .apply("Write to storage", TextIO.write().to(filePathPrefix).withSuffix(".json"));

    return pipeline.run();
  }

  /** Translates Bigtable {@link Row} to JSON. */
  static class BigtableToJsonFn extends SimpleFunction<Row, String> {
    private boolean flatten;
    private ValueProvider<String> columnsAliases;

    public BigtableToJsonFn(boolean flatten, ValueProvider<String> columnsAliases) {
      this.flatten = flatten;
      this.columnsAliases = columnsAliases;
    }

    @Override
    public String apply(Row row) {
      StringWriter stringWriter = new StringWriter();
      JsonWriter jsonWriter = new JsonWriter(stringWriter);
      try {
        if (flatten) {
          serializeFlattented(row, jsonWriter);
        } else {
          serializeUnFlattented(row, jsonWriter);
        }
      } catch (IOException e) {
        throw new RuntimeException(e);
      }
      return stringWriter.toString();
    }

    private void serializeUnFlattented(Row row, JsonWriter jsonWriter) throws IOException {
      jsonWriter.beginObject();
      jsonWriter.name(row.getKey().toStringUtf8());
      jsonWriter.beginObject();
      for (Family family : row.getFamiliesList()) {
        String familyName = family.getName();
        jsonWriter.name(familyName);
        jsonWriter.beginObject();
        for (Column column : family.getColumnsList()) {
          for (Cell cell : column.getCellsList()) {
            jsonWriter
                .name(column.getQualifier().toStringUtf8())
                .value(cell.getValue().toStringUtf8());
          }
        }
        jsonWriter.endObject();
      }
      jsonWriter.endObject();
      jsonWriter.endObject();
    }

    private void serializeFlattented(Row row, JsonWriter jsonWriter) throws IOException {
      jsonWriter.beginObject();
      Map<String, String> columnsWithAliases = extractColumnsAliases();

      maybeAddToJson(jsonWriter, columnsWithAliases, "rowkey", row.getKey().toStringUtf8());
      for (Family family : row.getFamiliesList()) {
        String familyName = family.getName();
        for (Column column : family.getColumnsList()) {
          for (Cell cell : column.getCellsList()) {
            maybeAddToJson(
                jsonWriter,
                columnsWithAliases,
                familyName + ":" + column.getQualifier().toStringUtf8(),
                cell.getValue().toStringUtf8());
          }
        }
      }
      jsonWriter.endObject();
    }

    private void maybeAddToJson(
        JsonWriter jsonWriter, Map<String, String> columnsWithAliases, String key, String value)
        throws IOException {
      if (!columnsWithAliases.isEmpty() && !columnsWithAliases.containsKey(key)) {
        return;
      }
      jsonWriter.name(columnsWithAliases.getOrDefault(key, key)).value(value);
    }

    private Map<String, String> extractColumnsAliases() {
      Map<String, String> columnsWithAliases = new HashMap<>();
      if (StringUtils.isBlank(columnsAliases.get())) {
        return columnsWithAliases;
      }
      String[] columnsList = columnsAliases.get().split(",");

      for (String columnsWithAlias : columnsList) {
        String[] columnWithAlias = columnsWithAlias.split(";");
        if (columnWithAlias.length == 2) {
          columnsWithAliases.put(columnWithAlias[0], columnWithAlias[1]);
        }
      }
      return columnsWithAliases;
    }
  }
}

What's next