Modèle BigQuery vers MongoDB

Le modèle BigQuery vers MongoDB est un pipeline par lots qui lit les lignes d'une table BigQuery et les écrit dans MongoDB sous forme de documents. Actuellement, chaque ligne est stockée en tant que document.

Conditions requises pour ce pipeline

  • La table BigQuery source doit exister.
  • L'instance MongoDB cible doit être accessible à partir des machines de nœud de calcul Dataflow.

Paramètres de modèle

Paramètres obligatoires

  • mongoDbUri : URI de connexion MongoDB au format mongodb+srv://:@.
  • database : Base de données dans MongoDB pour stocker la collection. (Exemple : my-db).
  • collection : nom de la collection dans la base de données MongoDB. (Exemple : my-collection).
  • inputTableSpec : table BigQuery à lire. (Exemple: bigquery-project:dataset.input_table).

Exécuter le modèle

Console

  1. Accédez à la page Dataflow Créer un job à partir d'un modèle.
  2. Accéder à la page Créer un job à partir d'un modèle
  3. Dans le champ Nom du job, saisissez un nom de job unique.
  4. Facultatif : pour Point de terminaison régional, sélectionnez une valeur dans le menu déroulant. La région par défaut est us-central1.

    Pour obtenir la liste des régions dans lesquelles vous pouvez exécuter un job Dataflow, consultez la page Emplacements Dataflow.

  5. Dans le menu déroulant Modèle Dataflow, sélectionnez the BigQuery to MongoDB template.
  6. Dans les champs fournis, saisissez vos valeurs de paramètres.
  7. Cliquez sur Run Job (Exécuter la tâche).

gcloud

Dans le shell ou le terminal, exécutez le modèle :

  gcloud dataflow flex-template run JOB_NAME \
      --project=PROJECT_ID \
      --region=REGION_NAME \
      --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/flex/BigQuery_to_MongoDB \
      --parameters \
  inputTableSpec=INPUT_TABLE_SPEC,\
  mongoDbUri=MONGO_DB_URI,\
  database=DATABASE,\
  collection=COLLECTION
  

Remplacez les éléments suivants :

  • PROJECT_ID : ID du projet Google Cloud dans lequel vous souhaitez exécuter le job Dataflow
  • JOB_NAME : nom de job unique de votre choix
  • REGION_NAME : région dans laquelle vous souhaitez déployer votre job Dataflow, par exemple us-central1
  • VERSION : version du modèle que vous souhaitez utiliser

    Vous pouvez utiliser les valeurs suivantes :

  • INPUT_TABLE_SPEC : nom de votre table BigQuery source.
  • MONGO_DB_URI : votre URI MongoDB.
  • DATABASE : votre base de données MongoDB.
  • COLLECTION : votre collection MongoDB.

API

Pour exécuter le modèle à l'aide de l'API REST, envoyez une requête HTTP POST. Pour en savoir plus sur l'API, ses autorisations et leurs champs d'application, consultez la section projects.templates.launch.

  POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
  {
     "launch_parameter": {
        "jobName": "JOB_NAME",
        "parameters": {
            "inputTableSpec": "INPUT_TABLE_SPEC",
            "mongoDbUri": "MONGO_DB_URI",
            "database": "DATABASE",
            "collection": "COLLECTION"
        },
        "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/BigQuery_to_MongoDB",
     }
  }

Remplacez les éléments suivants :

  • PROJECT_ID : ID du projet Google Cloud dans lequel vous souhaitez exécuter le job Dataflow
  • JOB_NAME : nom de job unique de votre choix
  • LOCATION : région dans laquelle vous souhaitez déployer votre job Dataflow, par exemple us-central1
  • VERSION : version du modèle que vous souhaitez utiliser

    Vous pouvez utiliser les valeurs suivantes :

  • INPUT_TABLE_SPEC : nom de votre table BigQuery source.
  • MONGO_DB_URI : votre URI MongoDB.
  • DATABASE : votre base de données MongoDB.
  • COLLECTION : votre collection MongoDB.

Étapes suivantes