Guía de inicio rápido

En esta guía de inicio rápido, se te guiará en el proceso de uso de la aplicación web AutoML Tables para realizar los siguientes pasos:

  • Crear un conjunto de datos
  • Importar los datos de la tabla de un archivo CSV al conjunto de datos
  • Identificar las columnas de esquema en los datos importados
  • Entrenar un modelo a partir de los datos importados
  • Usar el modelo para hacer predicciones

Todo el proceso tarda un par de horas en completarse. La mayor parte de ese tiempo no es tiempo de actividad; puedes cerrar la ventana del navegador y volver a la tarea más tarde.

Antes de comenzar

Crea un proyecto y habilita las AutoML Tables

  1. Accede a tu Cuenta de Google.

    Si todavía no tienes una cuenta, regístrate para obtener una nueva.

  2. En la página de selección de proyectos de Cloud Console, selecciona o crea un proyecto de Cloud.

    Ir a la página de selección de proyectos

  3. Comprueba que la facturación esté habilitada en tu proyecto.

    Descubre cómo puedes habilitar la facturación

  4. Habilita las API de Cloud AutoML and Storage.

    Habilita las API

Datos de muestra

En esta guía de inicio rápido, se usa el conjunto de datos de código abierto de Bank Marketing, que está disponible mediante una licencia de Creative Commons CCO: de dominio público. Los nombres de las columnas se actualizaron para una vista más clara.

Crea un conjunto de datos y entrena un modelo

  1. Visita AutoML Tables en Google Cloud Console para comenzar el proceso de crear tu conjunto de datos y entrenar tu modelo.

    Ir a la página AutoML Tables

  2. Selecciona Conjuntos de datos (Datasets) y, luego, selecciona Conjunto de datos nuevo (New Dataset).

    Página del conjunto de datos de AutoML Tables

  3. Ingresa Quickstart_Dataset para el nombre del conjunto de datos y haz clic en Crear conjunto de datos.

  4. En la página Importar tus datos (Import your data), selecciona Seleccionar un archivo CSV de Cloud Storage (Select a CSV file from Cloud Storage).

    Deja la Ubicación en Global.

  5. Ingresa cloud-ml-tables-data/bank-marketing.csv para el depósito.

  6. Haz clic en Importar (Importar).

    AutoML Tables crea la página del conjunto de datos

    La importación del conjunto de datos tarda unos minutos en completarse.

  7. Una vez que se complete la importación del conjunto de datos, selecciona Deposit para la Columna objetivo (Target column).

    La columna objetivo identifica el valor con el que el modelo se entrenará para predecir.

    Página del esquema de AutoML Tables

    Esta ventana proporciona información sobre tus datos importados. Puedes hacer clic en las filas individuales para obtener más información sobre la distribución y correlación de un atributo específico.

    información específica de una fila de un conjunto de datos

  8. Haz clic en Entrenar modelo (Train model). Ingresa Quickstart_Model en Nombre del modelo (Model name) y 1 en Presupuesto de entrenamiento (Training budget).

    Página de entrenamiento de AutoML Tables

  9. Haz clic en Entrenar modelo (Train model) para iniciar el proceso de entrenamiento.

    El entrenamiento del modelo tarda alrededor de dos horas en completarse. Una vez que el modelo se haya entrenado con éxito, en la pestaña Modelos (Models), se muestran las métricas de alto nivel del modelo.

    Métricas de alto nivel para un modelo entrenado

  10. Selecciona la pestaña Evaluar (Evaluate) para obtener una vista detallada de las métricas de evaluación del modelo.

    Para este modelo, 1 representa un resultado negativo, ya que no se realiza un depósito en el banco. 2 representa un resultado positivo, ya que se realiza un depósito en el banco.

    Puedes seleccionar una etiqueta y así ver las métricas de evaluación específicas para esa etiqueta. También puedes ajustar el Umbral de puntuación a fin de ver cómo difieren las métricas para los diferentes valores del umbral.

    AutoML Tables evalúa la página

    También puedes desplazarte hacia abajo para ver la matriz de confusión y el gráfico de importancia de los atributos.

    Gráfico de importancia de los atributos y matriz de confusión

  11. Selecciona la pestaña Probar y usar (Test & Use) y selecciona Predicción en línea (Online prediction).

  12. Haz clic en Implementar modelo (Deploy model) para implementar tu modelo.

    Debes implementar tu modelo para poder solicitar predicciones en línea. La implementación de un modelo tarda unos minutos en completarse.

    Botón de implementación de AutoML Tables

    Cuando se implementa el modelo, AutoML Tables completa los datos de muestra para ayudarte a probar tu modelo.

  13. Selecciona la casilla de verificación Generar importancia de los atributos (Generate feature importance).

  14. Haz clic en Predecir (Predict) para solicitar la predicción en línea.

    Botón de predicción de AutoML Tables con la casilla de verificación de la importancia de los atributos marcada

    AutoML Tables determina la probabilidad de cada resultado posible en función de los valores de entrada, y muestra los valores de confianza para la predicción en la sección Resultado de la predicción (Prediction result).

    Resultados de la predicción con la casilla de verificación de la importancia de los atributos marcada

    En el ejemplo anterior, el modelo predice el resultado de “1”, con un 99,8% de certeza.

    También puedes enviar solicitudes de predicción por lotes. Más información.

Realiza una limpieza

Si ya no necesitas tu conjunto de datos o modelo personalizado, puedes borrarlos.

A fin de evitar cargos innecesarios de Google Cloud Platform, usa Cloud Console para borrar tu proyecto si no lo necesitas.

Anula la implementación de tu modelo

Tu modelo generará cargos mientras esté implementado.

  1. Selecciona Modelos y haz clic en el modelo que quieras anular.
  2. Selecciona la pestaña Probar y usar y haz clic en Predicción en línea.
  3. Haz clic en Quitar implementación (Remove deployment).

Anular implementación de modelo

Borra un modelo

Para borrar un modelo, selecciona Modelos. Haz clic en el menú de más acciones del modelo que deseas borrar y, luego, selecciona Borrar modelo (Delete model).

Borrar modelo

Borra un conjunto de datos

Para borrar un conjunto de datos, selecciona Conjuntos de datos. Haz clic en el menú de más acciones del modelo que deseas borrar y, luego, selecciona Borrar conjunto de datos (Delete dataset).

Borrar conjunto de datos

Próximos pasos