Introduzione all'algoritmo XGBoost integrato

Grazie agli algoritmi integrati in AI Platform Training, puoi inviare i tuoi dati di addestramento, selezionare un algoritmo e lasciare che sia AI Platform Training per gestire la pre-elaborazione e l'addestramento al posto tuo, senza scrivere alcun codice per un'applicazione di addestramento.

Panoramica

In questo tutorial imparerai ad addestrare un modello XGBoost senza scrivere alcun codice. Devi inviare il set di dati Census Income ad AI Platform Training per la pre-elaborazione e l'addestramento, quindi esegui il deployment del modello su AI Platform Training per ottenere previsioni. Il modello risultante prevede la probabilità che il reddito annuo di un individuo sia superiore a 50.000 $.

Prima di iniziare

Per completare questo tutorial nella riga di comando, utilizza Cloud Shell o un qualsiasi ambiente in cui è installata Google Cloud CLI.

Completa i seguenti passaggi per configurare un account Google Cloud, abilitare le API richieste e installare e attivare Google Cloud CLI:

  1. Accedi al tuo account Google Cloud. Se non conosci Google Cloud, crea un account per valutare le prestazioni dei nostri prodotti in scenari reali. I nuovi clienti ricevono anche 300 $di crediti gratuiti per l'esecuzione, il test e il deployment dei carichi di lavoro.
  2. Nella console di Google Cloud Console, nella pagina del selettore dei progetti, seleziona o crea un progetto Google Cloud.

    Vai al selettore progetti

  3. Assicurati che la fatturazione sia attivata per il tuo progetto Google Cloud.

  4. Abilita le API AI Platform Training & Prediction and Compute Engine.

    Abilita le API

  5. Installa Google Cloud CLI.
  6. Per initialize gcloud CLI, esegui questo comando:

    gcloud init
  7. Nella console di Google Cloud Console, nella pagina del selettore dei progetti, seleziona o crea un progetto Google Cloud.

    Vai al selettore progetti

  8. Assicurati che la fatturazione sia attivata per il tuo progetto Google Cloud.

  9. Abilita le API AI Platform Training & Prediction and Compute Engine.

    Abilita le API

  10. Installa Google Cloud CLI.
  11. Per initialize gcloud CLI, esegui questo comando:

    gcloud init

Configurazione

Per utilizzare algoritmi tabulari integrati, devi rimuovere la riga di intestazione dal file CSV e spostare i valori di destinazione nella prima colonna. Abbiamo modificato il set di dati del censimento originale per utilizzarlo con questo tutorial e lo abbiamo ospitato in un bucket Cloud Storage pubblico, gs://cloud-samples-data/ai-platform/census/algorithms/data/.

Console

Prima di iniziare il job di addestramento, devi copiare i dati dal nostro bucket Cloud Storage pubblico nel bucket Cloud Storage.

Copia i dati di esempio nel bucket Cloud Storage

  1. Per prima cosa, scarica i dati di addestramento e test dal nostro bucket Cloud Storage pubblico.

    1. Vai al nostro bucket Cloud Storage pubblico:

      Recuperare i dati di esempio

    2. Scarica sia test.csv sia train.csv:

      1. Fai clic sul nome del file.

      2. Nella pagina Dettagli oggetto, fai clic su Scarica. Questi file vengono scaricati nel tuo ambiente locale rispettivamente come ai-platform_census_algorithms_data_test.csv e ai-platform_census_algorithms_data_train.csv.

  2. Successivamente, carica i dati di addestramento e test nel bucket Cloud Storage.

    1. Vai alla pagina Browser del bucket Cloud Storage. Seleziona il progetto dall'elenco a discesa Seleziona un progetto o aprilo in una nuova scheda:

      Pagina Browser Cloud Storage

    2. Fai clic sul nome del bucket che vuoi utilizzare oppure, se non ne hai uno, creane uno nuovo. Se crei un nuovo bucket, assicurati che sia a livello di regione e seleziona la stessa regione in cui esegui il job di addestramento di AI Platform Training.

    3. (Facoltativo) Fai clic su Crea cartella per creare una cartella per i file che carichi. Inserisci un nome per la cartella (ad esempio "dati") e fai clic su Crea. Passa quindi alla nuova cartella facendo clic sul suo nome.

    4. Fai clic su Carica file per caricare i file di addestramento e di test, ai-platform_census_algorithms_data_train.csv e ai-platform_census_algorithms_data_test.csv nel bucket.

Ora che i dati sono stati copiati nel bucket, puoi avviare un job di addestramento selezionando il tipo di algoritmo da utilizzare.

Seleziona l'algoritmo

  1. Vai alla pagina Job di addestramento di AI Platform nella console Google Cloud:

    Pagina dei job di AI Platform Training

  2. Fai clic sul pulsante Nuovo job di addestramento. Tra le opzioni visualizzate di seguito, fai clic su Addestramento con algoritmi integrati. Viene visualizzata la pagina Crea un nuovo job di addestramento.

  3. La creazione del job di formazione è suddivisa in quattro passaggi. Il primo passaggio è Algoritmo di addestramento. Seleziona XGBoost e fai clic su Avanti.

gcloud

Configura le variabili di ambiente per l'ID progetto, il bucket Cloud Storage, il percorso Cloud Storage dei dati di addestramento e la selezione dell'algoritmo.

Gli algoritmi integrati di AI Platform Training si trovano all'interno di container Docker ospitati in Container Registry.

PROJECT_ID=YOUR_PROJECT_ID
BUCKET_NAME=YOUR_BUCKET_NAME
REGION="us-central1"
gcloud config set project $PROJECT_ID
gcloud config set compute/region $REGION

# Copy the training data into your Cloud Storage bucket, and set the path
# to your copy of the training data.
TRAINING_DATA_SOURCE=gs://cloud-samples-data/ai-platform/census/algorithms/data/train.csv
TRAINING_DATA_PATH=gs://$BUCKET_NAME/algorithms-demo/data/train.csv
gsutil cp $TRAINING_DATA_SOURCE $TRAINING_DATA_PATH

# Specify the Docker container URI specific to the algorithm.
IMAGE_URI="gcr.io/cloud-ml-algos/boosted_trees:latest"

Invia un job di addestramento

Per inviare un job, devi specificare alcuni argomenti di addestramento di base e alcuni argomenti di base relativi all'algoritmo XGBoost.

Argomenti generali per il job di addestramento:

Argomenti dei job di addestramento
Argomento Descrizione
job-id ID univoco per il job di addestramento. Puoi utilizzarlo per trovare i log per lo stato del job di addestramento dopo l'invio.
job-dir Percorso di Cloud Storage in cui AI Platform Training salva i file di addestramento dopo aver completato un job di addestramento con esito positivo.
scale-tier Specifica i tipi di macchina per l'addestramento. Utilizza BASIC per selezionare la configurazione di una sola macchina.
master-image-uri URI di Container Registry utilizzato per specificare il container Docker da usare per il job di addestramento. Utilizza il container per l'algoritmo XGBoost integrato definito in precedenza come IMAGE_URI.
region Specifica la regione disponibile in cui eseguire il job di addestramento. Per questo tutorial, puoi utilizzare la regione us-central1.

Argomenti specifici dell'algoritmo XGBoost integrato:

Argomenti degli algoritmi
Argomento Descrizione
preprocess Argomento booleano che indica se AI Platform Training deve pre-elaborare i dati.
objective Indica l'attività di apprendimento e l'obiettivo di apprendimento corrispondente. In questo esempio, "binary:logistic".
training_data_path Percorso Cloud Storage dei dati di addestramento, che deve essere un file CSV.

Per un elenco dettagliato di tutti gli altri flag dell'algoritmo XGBoost, consulta il riferimento XGBoost integrato.

Console

  1. Lascia selezionata l'opzione Abilita pre-elaborazione automatica dei dati.

  2. In Percorso dati di addestramento, fai clic su Sfoglia. Nel riquadro a destra, fai clic sul nome del bucket in cui hai caricato i dati di addestramento e vai al file ai-platform_census_algorithms_data_train.csv.

  3. Lascia le impostazioni predefinite nei campi Dati di convalida e Dati di test.

  4. In Directory di output, inserisci il percorso del tuo bucket Cloud Storage in cui vuoi che AI Platform Training archivi gli output del job di addestramento. Puoi compilare direttamente il percorso del bucket Cloud Storage oppure fare clic sul pulsante Sfoglia per selezionarlo.

    Per mantenere tutto organizzato, crea una nuova directory all'interno del bucket Cloud Storage per questo job di addestramento. Puoi eseguire questa operazione nel riquadro Sfoglia.

    Tocca Avanti.

  5. Per Obiettivo, seleziona "binary:logistic", che indica un'attività di apprendimento binaria e un obiettivo di regressione logistica.

  6. In Tipo di modello, seleziona Classificazione.

  7. Lascia invariate le impostazioni predefinite di tutti gli altri campi e fai clic su Avanti.

  8. Nella pagina Impostazioni job:

    1. Inserisci un ID job univoco (ad esempio "xgboost_example").
    2. Inserisci una regione disponibile (ad es. "us-central1").
    3. Seleziona "BASIC" per il livello di scalabilità.

    Fai clic su Fine per inviare il job di addestramento.

gcloud

  1. Configura tutti gli argomenti per il job di addestramento e l'algoritmo, prima di utilizzare gcloud per inviare il job:

    DATASET_NAME="census"
    ALGORITHM="xgboost"
    MODEL_TYPE="classification"
    MODEL_NAME="${DATASET_NAME}_${ALGORITHM}_${MODEL_TYPE}"
    
    # Give a unique name to your training job.
    DATE="$(date '+%Y%m%d_%H%M%S')"
    JOB_ID="${MODEL_NAME}_${DATE}"
    
    # Make sure you have access to this Cloud Storage bucket.
    JOB_DIR="gs://${BUCKET_NAME}/algorithms_training/${MODEL_NAME}/${DATE}"
    
  2. Invia il job:

    gcloud ai-platform jobs submit training $JOB_ID \
      --master-image-uri=$IMAGE_URI --scale-tier=BASIC --job-dir=$JOB_DIR \
      -- \
      --preprocess --objective=binary:logistic \
      --training_data_path=$TRAINING_DATA_PATH
    

  3. Una volta inviato correttamente il job, puoi visualizzare i log utilizzando i seguenti comandi gcloud:

    gcloud ai-platform jobs describe $JOB_ID
    gcloud ai-platform jobs stream-logs $JOB_ID
    

Comprendi la directory dei job

Dopo il completamento corretto di un job di addestramento, AI Platform Training crea un modello addestrato nel tuo bucket Cloud Storage, insieme ad altri artefatti. All'interno di JOB_DIR puoi trovare la seguente struttura di directory:

  • modello/
    • model.pkl
    • deployment_config.yaml
  • artefatti/
    • instance_generator.py
    • metadata.json
  • dati_elaborati/
    • training.csv
    • validation.csv
    • test.csv

Verifica che la struttura di directory in JOB_DIR corrisponda a:

gsutil ls -a $JOB_DIR/*

Esegui il deployment del modello addestrato

AI Platform Prediction organizza i modelli addestrati utilizzando le risorse di model e model. Un modello di previsione di AI Platform è un container per le versioni del modello di machine learning.

Per eseguire il deployment di un modello, devi creare una risorsa del modello in AI Platform Prediction, creare una versione del modello, quindi utilizzare il modello e la versione per richiedere previsioni online.

Scopri di più su come eseguire il deployment dei modelli in AI Platform Prediction.

Console

  1. Nella pagina Job, puoi trovare un elenco di tutti i job di addestramento. Fai clic sul nome del job di addestramento appena inviato ("xgboost_example" o il nome del job che hai utilizzato).

  2. Nella pagina Dettagli job puoi visualizzare l'avanzamento generale del job o fare clic su Visualizza log per una visualizzazione più dettagliata del suo avanzamento.

  3. Se il job ha esito positivo, viene visualizzato il pulsante Esegui il deployment del modello in alto. Fai clic su Esegui il deployment del modello.

  4. Seleziona "Esegui il deployment come nuovo modello" e inserisci un nome del modello, ad esempio "xgboost_model". Quindi, fai clic su Conferma.

  5. Nella pagina Crea versione, inserisci un nome di versione, ad esempio "v1", e lascia le impostazioni predefinite per tutti gli altri campi. Fai clic su Salva.

  6. Nella pagina Dettagli modello viene visualizzato il nome della versione. La creazione della versione richiede alcuni minuti. Quando la versione è pronta, accanto al nome della versione viene visualizzata un'icona a forma di segno di spunta.

  7. Fai clic sul nome della versione ("v1") per accedere alla pagina Dettagli versione. Nel passaggio successivo di questo tutorial, invierai una richiesta di previsione

gcloud

Il processo di addestramento con l'algoritmo XGBoost integrato produce un file, deployment_config.yaml, che semplifica il deployment del modello su AI Platform Prediction per le previsioni.

  1. Copia il file nella directory locale e visualizzane i contenuti:

    gsutil cp $JOB_DIR/model/deployment_config.yaml .
    cat deployment_config.yaml
    

    Il tuo file deployment_config.yaml dovrebbe apparire simile al seguente:

    deploymentUri: gs://YOUR_BUCKET_NAME/algorithms_training/census_xgboost_classification/20190227060114/model
    framework: XGBOOST
    labels:
      job_id: census_xgboost_classification_20190227060114
      error_percentage: '14'
    runtimeVersion: '0.81'
    pythonVersion: '2.7'
    
  2. Crea il modello e la versione in AI Platform Training:

    MODEL_NAME="${DATASET_NAME}_${ALGORITHM}_${MODEL_TYPE}"
    gcloud ai-platform models create $MODEL_NAME --regions $REGION
    
    # Create a model and a version using the file above.
    VERSION_NAME="v_${DATE}"
    
    gcloud ai-platform versions create $VERSION_NAME \
      --model $MODEL_NAME \
      --config deployment_config.yaml
    

    La creazione della versione richiede alcuni minuti.

Ricevi previsioni online

Quando richiedi previsioni, devi assicurarti che i dati di input siano formattati nello stesso modo dei dati di addestramento. Prima dell'addestramento, AI Platform Training pre-elabora i dati trasformandoli nel corpus mostrato in metadata.json.

Puoi utilizzare instance_generator.py per applicare alle istanze di input le stesse trasformazioni di pre-elaborazione applicate da AI Platform Training ai dati di addestramento. Questo file legge le informazioni di mappatura archiviate nel file metadata.json. Puoi anche utilizzare la funzione transform_string_instance nel modulo per trasformare la stringa non elaborata in un formato accettato dal modello.

  1. Scarica i file degli elementi di addestramento ed esamina metadata.json:

    gsutil cp $JOB_DIR/artifacts/* .
    
    # Let's look at the metadata.json file
    head metadata.json
    
  2. Utilizza instance_generator.py per preparare l'input della previsione per un'istanza di dati:

     # ground truth is >50K
    RAW_DATA_POINT="44, Private, 160323, Some-college, 10, Married-civ-spouse, Machine-op-inspct, Husband, Black, Male, 7688, 0, 40, United-States"
    
     # Now let's create a JSON prediction request
    python instance_generator.py --raw_data_string="${RAW_DATA_POINT}" > sample_input.json
    
    # Let's look at the prediction request file.
    cat sample_input.json
    
  3. Invia la richiesta di previsione:

    gcloud ai-platform predict \
      --model $MODEL_NAME \
      --version $VERSION_NAME \
      --json-instances sample_input.json
    

La previsione risultante dovrebbe essere un numero maggiore di 0, 5,che indica che l'individuo con maggiore probabilità guadagna uno stipendio superiore a 50.000 $.

Informazioni sui dati

Il set di dati Census Income utilizzato da questo campione per l'addestramento è ospitato dal repository UC Irvine Machine Learning.

Dati del censimento gentilmente concessi da: Lichman, M. (2013); Repository di machine learning per UCI http://archive.ics.uci.edu/ml. Irvine, California: University of California, School of Information and Computer Science.

Passaggi successivi