This tutorial shows you how to fine-tune a Gemma 3 large language model (LLM) on a multi-node, multi-GPU GKE cluster on Google Cloud. This cluster uses an A4 virtual machine (VM) instance which has 8 NVIDIA B200 GPUs.
The two main processes described in this tutorial are as follows:
- Deploy a high-performance GKE cluster by using GKE Autopilot. As part of this deployment, you create a custom VM image with the necessary software pre-installed.
- After the cluster is deployed, you run a distributed fine-tuning job by using the set of scripts that accompany this tutorial. The job leverages the Hugging Face Accelerate library.
This tutorial is intended for machine learning (ML) engineers, researchers, platform administrators and operators, and for data and AI specialists who are interested in deploying GKE clusters on Google Cloud to train LLMs.
Objectives
Access the Gemma 3 model by using Hugging Face.
Prepare your environment.
Create and deploy an A4 GKE cluster.
Fine-tune the Gemma 3 model by using the Hugging Face Accelerate library with fully sharded data parallel (FSDP).
Monitor your job.
Clean up.
Costs
In this document, you use the following billable components of Google Cloud:
To generate a cost estimate based on your projected usage,
use the pricing calculator.
Before you begin
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
Install the Google Cloud CLI.
-
If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
Create or select a Google Cloud project.
-
Create a Google Cloud project:
gcloud projects create PROJECT_ID
Replace
PROJECT_ID
with a name for the Google Cloud project you are creating. -
Select the Google Cloud project that you created:
gcloud config set project PROJECT_ID
Replace
PROJECT_ID
with your Google Cloud project name.
-
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the required API:
gcloud services enable gcloud services enable compute.googleapis.com container.googleapis.com file.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com
-
Install the Google Cloud CLI.
-
If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
Create or select a Google Cloud project.
-
Create a Google Cloud project:
gcloud projects create PROJECT_ID
Replace
PROJECT_ID
with a name for the Google Cloud project you are creating. -
Select the Google Cloud project that you created:
gcloud config set project PROJECT_ID
Replace
PROJECT_ID
with your Google Cloud project name.
-
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the required API:
gcloud services enable gcloud services enable compute.googleapis.com container.googleapis.com file.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com
-
Grant roles to your user account. Run the following command once for each of the following IAM roles:
roles/compute.admin, roles/iam.serviceAccountUser, roles/cloudbuild.builds.editor, roles/artifactregistry.admin, roles/storage.admin, roles/serviceusage.serviceUsageAdmin
gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE
Replace the following:
PROJECT_ID
: your project ID.USER_IDENTIFIER
: the identifier for your user account—for example,myemail@example.com
.ROLE
: the IAM role that you grant to your user account.
- Enable the default service account for your Google Cloud project:
gcloud iam service-accounts enable PROJECT_NUMBER-compute@developer.gserviceaccount.com \ --project=PROJECT_ID
Replace PROJECT_NUMBER with your project number. To review your project number, see Get an existing project.
- Grant the Editor role (
roles/editor
) to the default service account:gcloud projects add-iam-policy-binding PROJECT_ID \ --member="serviceAccount:PROJECT_NUMBER-compute@developer.gserviceaccount.com" \ --role=roles/editor
- Create local authentication credentials for your user account:
gcloud auth application-default login
- Enable OS Login for your project:
gcloud compute project-info add-metadata --metadata=enable-oslogin=TRUE
- Sign in to or create a Hugging Face account.
Access Gemma 3 by using Hugging Face
To use Hugging Face to access Gemma 3, do the following:
- Sign in to Hugging Face
- Create a Hugging Face
read
access token.
Click Your Profile > Settings > Access tokens > +Create new token - Copy and save the
read access
token value. You use it later in this tutorial.
Prepare your environment
To prepare your environment, set the following:
gcloud config set project PROJECT_NAME
gcloud config set billing/quota_project PROJECT_NAME
export RESERVATION=YOUR_RESERVATION_ID
export PROJECT_ID=$(gcloud config get project)
export REGION=CLUSTER_REGION
export CLUSTER_NAME=CLUSTER_NAME
export HF_TOKEN=YOUR_TOKEN
export NETWORK=default
Replace the following:
PROJECT_NAME
: the name of the Google Cloud project where you want to create the GKE cluster.YOUR_RESERVATION_ID
: the identifier for your reserved capacity.CLUSTER_REGION
: the region where you want to create your GKE cluster. You can only create the cluster in the region where you reservation exists.CLUSTER_NAME
: the name of the GKE cluster to create.HF_TOKEN
: the Hugging Face access token that you created in the previous section.
Create a GKE cluster in Autopilot mode
To create a GKE cluster in Autopilot mode, run the following command:
gcloud container clusters create-auto ${CLUSTER_NAME} \
--project=${PROJECT_ID} \
--location=${REGION} \
--release-channel=rapid
Creating the GKE cluster might take some time to complete. To verify that Google Cloud has finished creating your cluster, go to Kubernetes clusters on the Google Cloud console.
Create a Kubernetes secret for Hugging Face credentials
To create a Kubernetes secret for Hugging Face credentials, follow these steps:
Configure
kubectl
to communicate with your GKE cluster:gcloud container clusters get-credentials $CLUSTER_NAME \ --location=$REGION
Create a Kubernetes secret to store your Hugging Face token:
gcloud container clusters get-credentials ${CLUSTER_NAME} \ --location=${REGION} kubectl create secret generic hf-secret \ --from-literal=hf_api_token=${HF_TOKEN} \ --dry-run=client -o yaml | kubectl apply -f -
Prepare your workload
To prepare your workload, you do the following:
Create workload scripts
To create the scripts that your fine-tuning workload uses, do the following:
Create a directory for the workload scripts. Use this directory as your working directory.
mkdir llm-finetuning-gemma cd llm-finetuning-gemma
Create the
cloudbuild.yaml
file to use Google Cloud Build. This file creates your workload container and stores it in Artifact Registry:steps: - name: 'gcr.io/cloud-builders/docker' args: [ 'build', '-t', 'us-docker.pkg.dev/$PROJECT_ID/gemma/finetune-gemma-gpu:1.0.0', '.' ] images: - 'us-docker.pkg.dev/$PROJECT_ID/gemma/finetune-gemma-gpu:1.0.0'
Create a
Dockerfile
file to execute the fine-tuning job:FROM nvidia/cuda:12.8.1-cudnn-devel-ubuntu24.04 RUN apt-get update && \ apt-get -y install python3 python3-dev gcc python3-pip python3-venv git curl vim RUN python3 -m venv /opt/venv ENV PATH="/opt/venv/bin:/usr/local/nvidia/bin:$PATH" ENV LD_LIBRARY_PATH="/usr/local/nvidia/lib64:$LD_LIBRARY_PATH" RUN pip3 install setuptools wheel packaging ninja RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128 RUN pip3 install \ transformers==4.53.3 \ datasets==4.0.0 \ accelerate==1.9.0 \ evaluate==0.4.5 \ bitsandbytes==0.46.1 \ trl==0.19.1 \ peft==0.16.0 \ tensorboard==2.20.0 \ protobuf==6.31.1 \ sentencepiece==0.2.0 COPY finetune.py /finetune.py COPY accel_fsdp_gemma3_config.yaml /accel_fsdp_gemma3_config.yaml CMD accelerate launch --config_file accel_fsdp_gemma3_config.yaml finetune.py
Create the
accel_fsdp_gemma3_config.yaml
file. This configuration file directs Hugging Face Accelerate to split the tuning job across multiple GPUs.compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' enable_cpu_affinity: false fsdp_config: fsdp_activation_checkpointing: false fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_cpu_ram_efficient_loading: true fsdp_offload_params: false fsdp_reshard_after_forward: true fsdp_state_dict_type: FULL_STATE_DICT fsdp_transformer_layer_cls_to_wrap: Gemma3DecoderLayer fsdp_version: 2 machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false
Create the
finetune.yaml
file:apiVersion: batch/v1 kind: Job metadata: name: finetune-job namespace: default spec: backoffLimit: 2 template: metadata: annotations: kubectl.kubernetes.io/default-container: finetuner spec: terminationGracePeriodSeconds: 600 containers: - name: finetuner image: $IMAGE_URL command: ["accelerate","launch"] args: - "--config_file" - "accel_fsdp_gemma3_config.yaml" - "finetune.py" - "--model_id" - "google/gemma-3-12b-pt" - "--output_dir" - "gemma-12b-text-to-sql" - "--per_device_train_batch_size" - "8" - "--gradient_accumulation_steps" - "8" - "--num_train_epochs" - "3" - "--learning_rate" - "1e-5" - "--save_strategy" - "steps" - "--save_steps" - "100" resources: limits: nvidia.com/gpu: "8" env: - name: HF_TOKEN valueFrom: secretKeyRef: name: hf-secret key: hf_api_token volumeMounts: - mountPath: /dev/shm name: dshm volumes: - name: dshm emptyDir: medium: Memory nodeSelector: cloud.google.com/gke-accelerator: nvidia-b200 cloud.google.com/reservation-name: $RESERVATION cloud.google.com/reservation-affinity: "specific" cloud.google.com/gke-gpu-driver-version: latest restartPolicy: OnFailure
Create the
finetune.py
file:import torch import argparse import subprocess from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model from trl import SFTTrainer, SFTConfig from huggingface_hub import login def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_id", type=str, default="google/gemma-3-12b-pt", help="Hugging Face model ID") parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face token for private models") parser.add_argument("--trust_remote", type=bool, default="False", help="Trust remote code when loading tokenizer") parser.add_argument("--use_fast", type=bool, default="True", help="Determines if a fast Rust-based tokenizer should be used") parser.add_argument("--dataset_name", type=str, default="philschmid/gretel-synthetic-text-to-sql", help="Hugging Face dataset name") parser.add_argument("--output_dir", type=str, default="gemma-12b-text-to-sql", help="Directory to save model checkpoints") # LoRA arguments parser.add_argument("--lora_r", type=int, default=16, help="LoRA attention dimension") parser.add_argument("--lora_alpha", type=int, default=16, help="LoRA alpha scaling factor") parser.add_argument("--lora_dropout", type=float, default=0.05, help="LoRA dropout probability") # SFTConfig arguments parser.add_argument("--max_seq_length", type=int, default=512, help="Maximum sequence length") parser.add_argument("--num_train_epochs", type=int, default=3, help="Number of training epochs") parser.add_argument("--per_device_train_batch_size", type=int, default=8, help="Batch size per device during training") parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Gradient accumulation steps") parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate") parser.add_argument("--logging_steps", type=int, default=10, help="Log every X steps") parser.add_argument("--save_strategy", type=str, default="steps", help="Checkpoint save strategy") parser.add_argument("--save_steps", type=int, default=100, help="Save checkpoint every X steps") parser.add_argument("--push_to_hub", action='store_true', help="Push model back up to HF") parser.add_argument("--hub_private_repo", type=bool, default="True", help="Push to a private repo") return parser.parse_args() def main(): args = get_args() # --- 1. Setup and Login --- if args.hf_token: login(args.hf_token) # --- 2. Create and prepare the fine-tuning dataset --- # The `create_conversation` function is no longer needed. # The SFTTrainer will use the `formatting_func` to apply the chat template. dataset = load_dataset(args.dataset_name, split="train") dataset = dataset.shuffle().select(range(12500)) dataset = dataset.train_test_split(test_size=2500/12500) # --- 3. Configure Model and Tokenizer --- if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8: torch_dtype_obj = torch.bfloat16 torch_dtype_str = "bfloat16" else: torch_dtype_obj = torch.float16 torch_dtype_str = "float16" tokenizer = AutoTokenizer.from_pretrained(args.model_id, trust_remote_code=args.trust_remote, use_fast=args.use_fast) tokenizer.pad_token = tokenizer.eos_token gemma_chat_template = ( "" "" ) tokenizer.chat_template = gemma_chat_template # --- 4. Define the Formatting Function --- # This function will be used by the SFTTrainer to format each sample # from the dataset into the correct chat template format. def formatting_func(example): # The create_conversation logic is now implicitly handled by this. # We need to construct the messages list here. system_message = "You are a text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA." user_prompt = "Given the <USER_QUERY> and the <SCHEMA>, generate the corresponding SQL command to retrieve the desired data, considering the query's syntax, semantics, and schema constraints.\n\n<SCHEMA>\n{context}\n</SCHEMA>\n\n<USER_QUERY>\n{question}\n</USER_QUERY>\n" messages = [ {"role": "user", "content": user_prompt.format(question=example["sql_prompt"][0], context=example["sql_context"][0])}, {"role": "assistant", "content": example["sql"][0]} ] return tokenizer.apply_chat_template(messages, tokenize=False) # --- 5. Load Model and Apply PEFT --- config = AutoConfig.from_pretrained(args.model_id) config.use_cache = False # We'll be loading this model full precision because we're planning to do FSDP # Load the base model with quantization print("Loading base model...") model = AutoModelForCausalLM.from_pretrained( args.model_id, config=config, attn_implementation="eager", torch_dtype=torch_dtype_obj, ) # Prepare the model for k-bit training model = prepare_model_for_kbit_training(model) # Configure LoRA. peft_config = LoraConfig( lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout, r=args.lora_r, bias="none", target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], task_type="CAUSAL_LM", ) # Apply the PEFT config to the model print("Applying PEFT configuration...") model = get_peft_model(model, peft_config) model.print_trainable_parameters() # --- 6. Configure Training Arguments --- training_args = SFTConfig( output_dir=args.output_dir, max_seq_length=args.max_seq_length, num_train_epochs=args.num_train_epochs, per_device_train_batch_size=args.per_device_train_batch_size, gradient_accumulation_steps=args.gradient_accumulation_steps, learning_rate=args.learning_rate, logging_steps=args.logging_steps, save_strategy=args.save_strategy, save_steps=args.save_steps, packing=False, label_names=["domain"], gradient_checkpointing=True, gradient_checkpointing_kwargs={"use_reentrant": False}, optim="adamw_torch", fp16=True if torch_dtype_obj == torch.float16 else False, bf16=True if torch_dtype_obj == torch.bfloat16 else False, max_grad_norm=0.3, warmup_ratio=0.03, lr_scheduler_type="constant", push_to_hub=True, report_to="tensorboard", dataset_kwargs={ "add_special_tokens": False, "append_concat_token": True, } ) # --- 7. Create Trainer and Start Training --- trainer = SFTTrainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], formatting_func=formatting_func, ) print("Starting training...") trainer.train() print("Training finished.") # --- 8. Save the final model --- print(f"Saving final model to {args.output_dir}") model.cpu() trainer.save_model(args.output_dir) torch.distributed.destroy_process_group() if __name__ == "__main__": main()
Use Docker and Cloud Build to create a fine-tuning container
Create an Artifact Registry Docker Repository:
gcloud artifacts repositories create gemma \ --project=${PROJECT_ID} \ --repository-format=docker \ --location=us \ --description="Gemma Repo"
In the
llm-finetuning-gemma
directory that you created in an earlier step, run the following command to create the fine-tuning container and push it to Artifact Registry.gcloud builds submit .
Export the image URL. You use it at a later step in this tutorial:
export IMAGE_URL=us-docker.pkg.dev/${PROJECT_ID}/gemma/finetune-gemma-gpu:1.0.0
Start your fine-tuning workload
To start your fine-tuning workload, do the following:
Apply the finetune manifest to create the fine-tuning job:
envsubst < finetune.yaml | kubectl apply -f -
Because you're using clusters in GKE Autopilot mode, it might take a few minutes to start your GPU enabled node.
Monitor the job by running the following command:
ewatch kubectl get pods
Check the logs of the job by running the following command:
kubectl logs job.batch/finetune-job -f
The job resource downloads the model data then fine-tunes the model across all eight of the GPUs. The download takes around five minutes to complete. After the download is complete, the fine-tuning process takes approximately two hours and 30 minutes to complete.
Monitor your workload
You can monitor the use of the GPUs in your GKE cluster to verify that your fine-tuning job is efficiently running. To do so, open the following link in your browser:
https://console.cloud.google.com/kubernetes/clusters/details/us-central1/[CLUSTER_NAME]/observability?mods=monitoring_api_prod&project=[YOUR_PROJECT_ID]]&pageState=("timeRange":("duration":"PT1H"),"nav":("section":"gpu"),"groupBy":("groupByType":"namespacesTop5"))
When you monitor your workload, you can see the following:
- GPUs usage: for a healthy fine-tuning job, you can expect to see the usage of all of your 8 GPUs rise and stabilize to a high level throughout your training.
- Job duration: the job should take approximately 10 minutes to complete on the specified A4 cluster.
Clean up
To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, either delete the project that contains the resources, or keep the project and delete the individual resources.
Delete your project
Delete a Google Cloud project:
gcloud projects delete PROJECT_ID
Delete your resources
To delete your fine-tuning job, run the following command:
kubectl delete job finetune-job
To delete your GKE cluster, run the following command:
gcloud container clusters delete $CLUSTER_NAME \ --region=$REGION