This page shows you how to create your own Hypercompute Cluster with Google Kubernetes Engine (GKE) to support your AI and ML workloads, using A3 Ultra GPUs. GKE is the open, portable, extensible, and highly scalable platform for Hypercompute Cluster. GKE provides a single platform surface to run a diverse set of workloads for your organization's. This includes high performance distributed pre-training, model fine-tuning, model inference, application serving, and supporting services. GKE reduces the operational burden of managing multiple platforms.
The instructions on this page explain how to create a GKE cluster manually for maximum flexibility in configuring your cluster based on the needs of your workload. Alternatively, you can choose to use Cluster Toolkit to quickly deploy your cluster with default settings that reflect best practices for many use cases. For instructions on how to do this, see Create a Hypercompute Cluster with GKE with default configuration.
For creating your cluster manually, you can choose one of the following cluster configuration options:
- Create a GKE cluster without using GPUDirect RDMA, if you're not planning to run distributed AI workloads.
- Create a GKE cluster with GPUDirect RDMA, if you're planning to run distributed AI workloads.
Before you begin
Before you start, make sure you have performed the following tasks:
- Enable the Google Kubernetes Engine API. Enable Google Kubernetes Engine API
- If you want to use the Google Cloud CLI for this task,
install and then
initialize the
gcloud CLI. If you previously installed the gcloud CLI, get the latest
version by running
gcloud components update
.
- Ensure that you have enough quota for A3 Ultra GPUs. To request more quota, follow the instructions in GPU quota. To ensure that your cluster has capacity, you can follow the instructions to reserve capacity.
Requirements
The following requirements apply to Hypercompute Cluster with GKE:
- The H200 GPUs in A3 Ultra VMs require a minimum of 550 GPU driver version,
which is available in GKE 1.31 as
latest
driver version. For A3 Ultra, you must setgpu-driver-version=latest
with GKE 1.31. For GKE version 1.31.4-gke.1183000 or later, GKE, by default, automatically installs 550 GPU driver versions on A3 Ultra nodes. - To use GPUDirect RDMA, the following additional requirements apply:
- Use GKE patch version 1.31.4-gke.1183000 or higher.
- The GKE nodes must use a Container-Optimized OS node image. Ubuntu and Windows node images are not supported.
- Your GKE workload must use all available GPUs and your Pod must use all available secondary NICs on a single GKE node. Multiple Pods cannot share RDMA on a single GKE node.
- This setup runs a NCCL test. To run this NCCL test, you must have at least 2 VM quota (16 GPUs if using a3-ultragpu-8g).
Create a cluster
Follow the instructions in this section to create a GKE cluster that meets the requirements for Hypercompute Cluster with GKE. You can choose between creating a cluster with or without GPUDirect RDMA.
For both options, edit the following placeholders with your own values for use in the instructions:
PROJECT_ID
: your Google Cloud project ID.CLUSTER_NAME
: the name of your new cluster.NODE_POOL_NAME
: the name of the node pool.COMPUTE_REGION
: the region of your new cluster. For dense reservations, you can replace this with--zone=COMPUTE_ZONE
if you're creating a zonal cluster. When creating node pools in a regional cluster, you can use--node-locations
to specify the zones for your GKE nodes.CLUSTER_VERSION
: the version of your new cluster, which must be greater than 1.31.4-gke.1183000 to use GPUDirect RDMA.GPU_TYPE
: the type of GPU accelerator. For example,nvidia-h200-141gb
for A3 Ultra virtual machines (VMs).AMOUNT
: the number of GPUs to attach to nodes in the node pool. Fora3-ultragpu-8g
, the amount will be 8 GPUs.DRIVER_VERSION
: the NVIDIA driver version to install. It can be one of the following values:default
: Install the default driver version for your GKE node version. The H200 GPUs (A3 Ultra VMs) require a minimum of 550 GPU driver versions. For GKE version 1.31.4-gke.1183000 or later, if you omit thegpu-driver-version
flag, this flag is the default option and GKE automatically installs 550 GPU driver versions on A3 Ultra nodes.latest
: Install the latest available driver version for your GKE version. Available only for nodes that are using Container-Optimized OS.disabled
: Skip automatic driver installation. You must manually install a driver after you create the node pool.
To see the default and latest GPU driver versions for GKE node versions, see Manually install NVIDIA GPU drivers.
MACHINE_TYPE
: The Compute Engine machine type for the nodes. For example,a3-ultragpu-8g
for A3 Ultra VMs.NUM_NODES
: The number of nodes for the node pool.Reservation affinity: the
--reservation-affinity
flag can take the values ofspecific
orany
. For high performance distributed AI workloads, we recommend using a specific reservation. When usingspecific
, you must specify the--reservation
flag, which takes the following values:RESERVATION_NAME
/reservationBlocks/BLOCK_NAME
:RESERVATION_NAME
is the name of your reservation, andBLOCK_NAME
is the name of a specific block within the reservation. Both of these values can be obtained by querying your reservation. If using a shared reservation, you must also include thePROJECT_ID
using the following format:projects/PROJECT_ID/reservationsRESERVATION_NAME/reservationBlocks/BLOCK_NAME
.
Create a cluster without GPUDirect RDMA
For creating a cluster without GPUDirect RDMA, you can use one of the following node pool configuration options:
- Use a CPU-based default node pool and add additional node pools with GPUs. We recommend this approach, which allows the default node pool to run other services.
Use a GPU-based default node pool.
Create the cluster:
gcloud container clusters create
CLUSTER_NAME \ --region=COMPUTE_REGION Create the GPU-based node pool:
gcloud container node-pools create
NODE_POOL_NAME \ --regionCOMPUTE_REGION --clusterCLUSTER_NAME \ --node-locationsCOMPUTE_ZONE \ --accelerator type=GPU_TYPE ,count=AMOUNT ,gpu-driver-version=DRIVER_VERSION \ --machine-typeMACHINE_TYPE \ --num-nodes=NUM_NODES \ --reservation-affinity=specific \ --reservation=RESERVATION_NAME /reservationBlocks/BLOCK_NAME
Create the cluster, with a GPU-based default node pool:
gcloud container clusters create CLUSTER_NAME \
--region=COMPUTE_REGION \
--cluster-version=CLUSTER_VERSION \
--accelerator type=GPU_TYPE ,count=AMOUNT ,gpu-driver-version=DRIVER_VERSION \
--machine-type=MACHINE_TYPE \
--num-nodes=NUM_NODES \
--reservation-affinity=specific \
--reservation=RESERVATION_NAME /reservationBlocks/BLOCK_NAME
Create a cluster with GPUDirect RDMA
For distributed AI workloads, multiple GPU nodes are often linked together to work as a single computer. The A3 Ultra VMs come with the Titanium ML network adapter which is built on NVIDIA ConnectX-7 (CX7) network interface cards (NICs). A3 Ultra VMs deliver non-blocking 3.2 Tbps of inter-node GPU-to-GPU traffic using RDMA over Converged Ethernet (RoCE), enabling scaling and collaboration across multiple GPUs delivering a high-performance cloud experience for AI workloads.
To create your GKE clusters manually using GPUDirect TCPX (A3 High VMs) or TCPXO (A3 Mega VMs), see maximize GPU network bandwidth in Standard mode clusters.
To create your GKE clusters manually with GPUDirect RDMA, you'll complete the following steps, which are described in the next sections:
- Create VPCs and subnets
- Create GKE cluster and GPU node pool with multi-networking
- Create GKE network objects
- Install the RDMA binary and configure NCCL
- Deploy and run a NCCL test
- Configure your POD manifests for GPUDirect-RDMA
Create VPCs and subnets
A3 Ultra GPUs have the following configuration:
- Eight NVIDIA H200 GPUs per virtual machine connected with NVLink
- Two Intel Emerald Rapids CPUs
- Eight 400 Gbps CX-7 network interface cards (NICs) for GPU-to-GPU networking
- Two 200 Gbps Google Titanium network interface cards (NICs) for external services
AI and ML workloads, such as distributed training, require powerful acceleration to optimize performance by reducing job completion times. For such workloads that require high performance, high throughput, and low latency, GPUDirect RDMA reduces the overhead required to transfer payloads to and from GPUs significantly improving throughput at scale compared to GPUs that don't use GPUDirect.
One of the Google Titanium NICs that is associated with the CPU uses the default network in GKE, so you don't have to create a new VPC for this NIC as long as you have enough IP ranges for the default network.
You can create one VPC for the second CPU Titanium NIC (gVNIC) and another VPC for the eight CX-7 RDMA NICs using these commands.
Set environment variables to match your deployment:
export MTU_SIZE=8896 export REGION="
COMPUTE_REGION " export ZONE="COMPUTE_ZONE " export PROJECT="PROJECT_ID " export GVNIC_NETWORK_PREFIX="a3ultra-gvnic" export RDMA_NETWORK_PREFIX="a3ultra-rdma"Replace the following variables:
COMPUTE_REGION
: the region of your cluster.COMPUTE_ZONE
: the zone of your A3 Ultra node pool.PROJECT_ID
: your Google Cloud project ID.
MTU_SIZE
of 8896 is recommended for RDMA networks.Create two VPC networks:
# Create a VPC for the additional Google Titanium CPU NIC gcloud compute --project=${PROJECT?} \ networks create \ ${GVNIC_NETWORK_PREFIX?}-net \ --subnet-mode=custom \ --mtu=${MTU_SIZE?} gcloud compute --project=${PROJECT?} \ networks subnets create \ ${GVNIC_NETWORK_PREFIX?}-sub \ --network=${GVNIC_NETWORK_PREFIX?}-net \ --region=${REGION?} \ --range=192.168.0.0/24 gcloud compute --project=${PROJECT?} \ firewall-rules create \ ${GVNIC_NETWORK_PREFIX?}-internal \ --network=${GVNIC_NETWORK_PREFIX?}-net \ --action=ALLOW \ --rules=tcp:0-65535,udp:0-65535,icmp \ --source-ranges=192.168.0.0/16 # Create HPC VPC for the RDMA NICs with 8 subnets. gcloud beta compute --project=${PROJECT?} \ networks create ${RDMA_NETWORK_PREFIX?}-net \ --network-profile=${ZONE?}-vpc-roce \ --subnet-mode=custom \ --mtu=${MTU_SIZE?} # Create subnets for the HPC VPC. for N in $(seq 0 7); do gcloud compute --project=${PROJECT?} \ networks subnets create \ ${RDMA_NETWORK_PREFIX?}-sub-$N \ --network=${RDMA_NETWORK_PREFIX?}-net \ --region=${REGION?} \ --range=192.168.$((N+1)).0/24 & # offset to avoid overlap with gvnics done
Create the GKE cluster and GPU node pool with multi-networking
Create the cluster:
gcloud container clusters create CLUSTER_NAME \ --region=
COMPUTE_REGION \ --cluster-version=CLUSTER_VERSION \ --enable-dataplane-v2 --enable-ip-alias --enable-multi-networking \ [--services-ipv4-cidr=SERVICE_CIDR ] \ --cluster-ipv4-cidr=POD_CIDR Replace the following variables if you use the optional flags:
SERVICE_CIDR
andPOD_CIDR
: Optionally, you can explicitly provide the secondary ranges for services and Pods. You must ensure that these ranges don't overlap with subnet ranges for additional node networks. For example,SERVICE_CIDR=10.65.0.0/19
andPOD_CIDR=10.64.0.0/19
.
Create the node pool:
gcloud container node-pools create
NODE_POOL_NAME \ --regionCOMPUTE_REGION --clusterCLUSTER_NAME \ --node-locationsCOMPUTE_ZONE \ --accelerator type=GPU_TYPE ,count=AMOUNT ,gpu-driver-version=DRIVER_VERSION \ --machine-typeMACHINE_TYPE \ --num-nodes=NUM_NODES \ --reservation-affinity=specific \ --reservation=RESERVATION_NAME /reservationBlocks/BLOCK_NAME \ --additional-node-network network=${GVNIC_NETWORK_PREFIX}-net,subnetwork=${GVNIC_NETWORK_PREFIX}-sub \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-0 \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-1 \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-2 \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-3 \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-4 \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-5 \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-6 \ --additional-node-network network=${RDMA_NETWORK_PREFIX}-net,subnetwork=${RDMA_NETWORK_PREFIX}-sub-7
Create the GKE network objects
The VPC networks created in the previous section need to be configured through GKE network parameter sets. Specifically, the second CPU Titanium NIC (gVNIC) needs to be configured in NetDevice mode and each of the eight CX-7 RDMA NICs need to be configured in RDMA mode.
This command uses the following names:
- CPU Titanium NIC (gVNIC) VPC is named
${GVNIC_NETWORK_PREFIX?}-net
with subnet named${GVNIC_NETWORK_PREFIX?}-sub
- CX-7 RDMA NICs VPC is named
${RDMA_NETWORK_PREFIX?}-net
with subnets named${RDMA_NETWORK_PREFIX?}-sub-[0…7]
Create the GKE network objects by running the following command:
kubectl apply -f - <<EOF
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: gvnic-1
spec:
vpc: ${GVNIC_NETWORK_PREFIX}-net
vpcSubnet: ${GVNIC_NETWORK_PREFIX}-sub
deviceMode: NetDevice
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: gvnic-1
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: gvnic-1
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-0
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-0
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-0
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-0
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-1
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-1
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-1
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-1
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-2
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-2
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-2
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-2
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-3
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-3
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-3
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-3
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-4
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-4
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-4
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-4
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-5
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-5
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-5
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-5
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-6
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-6
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-6
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-6
---
apiVersion: networking.gke.io/v1
kind: GKENetworkParamSet
metadata:
name: rdma-7
spec:
vpc: ${RDMA_NETWORK_PREFIX}-net
vpcSubnet: ${RDMA_NETWORK_PREFIX}-sub-7
deviceMode: RDMA
---
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: rdma-7
spec:
type: "Device"
parametersRef:
group: networking.gke.io
kind: GKENetworkParamSet
name: rdma-7
EOF
Install the RDMA binary and configure NCCL
Apply the following DaemonSet to install the RDMA binaries and the NCCL library
on the node. The RDMA binaries are stored in /home/kubernetes/bin/gib
directory and the NCCL library is stored in /home/kubernetes/bin/nvidia/lib64
directory on the VM:
kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/refs/heads/master/gpudirect-rdma/nccl-rdma-installer.yaml
Run NCCL tests
To validate the functionality of the provisioned cluster, you can run a NCCL test. For instructions, see Deploy and run a NCCL test.
Configure your Pod manifests for GPUDirect RDMA
To run your workloads using GPUDirect RDMA, configure your Pod manifests with the following steps:
To avoid setting
hostNetwork: true
, add the following annotations to the Pod metadata:metadata: annotations: networking.gke.io/default-interface: 'eth0' networking.gke.io/interfaces: | [ {"interfaceName":"eth0","network":"default"}, {"interfaceName":"eth1","network":"gvnic-1"}, {"interfaceName":"eth2","network":"rdma-0"}, {"interfaceName":"eth3","network":"rdma-1"}, {"interfaceName":"eth4","network":"rdma-2"}, {"interfaceName":"eth5","network":"rdma-3"}, {"interfaceName":"eth6","network":"rdma-4"}, {"interfaceName":"eth7","network":"rdma-5"}, {"interfaceName":"eth8","network":"rdma-6"}, {"interfaceName":"eth9","network":"rdma-7"} ]
Add the following volumes to the Pod spec:
spec: volumes: - name: library-dir-host hostPath: path: /home/kubernetes/bin/nvidia - name: gib hostPath: path: /home/kubernetes/bin/gib
Add the following volume mounts, environment variables, and resources to the container that requests GPUs. Your workload container must request all 8 GPUs:
containers: - name: my-container volumeMounts: - name: library-dir-host mountPath: /usr/local/nvidia - name: gib mountPath: /usr/local/gib env: - name: LD_LIBRARY_PATH value: /usr/local/nvidia/lib64 resources: limits: nvidia.com/gpu: 8
Set all the recommended environment variables to configure NCCL, by using the following shell script from the workload container:
source /usr/local/gib/scripts/set_nccl_env.sh
You can also manually set the environment variables to configure NCCL by running the following command:
"NCCL_SOCKET_IFNAME==eth0,eth1", "NCCL_CROSS_NIC=0", "NCCL_NET_GDR_LEVEL=PIX", "NCCL_P2P_NET_CHUNKSIZE=131072", "NCCL_P2P_PCI_CHUNKSIZE=131072", "NCCL_P2P_NVL_CHUNKSIZE=524288", "NCCL_NVLS_CHUNKSIZE=524288", "NCCL_IB_GID_INDEX=3", "NCCL_IB_ADAPTIVE_ROUTING=1", "NCCL_IB_QPS_PER_CONNECTION=4", "NCCL_IB_TC=52", "NCCL_IB_FIFO_TC=84", "NCCL_SHIMNET_GUEST_CONFIG_CHECKER_CONFIG_FILE=/usr/local/gib/configs/guest_config.txtpb", "NCCL_TUNER_CONFIG_PATH=/usr/local/gib/configs/tuner_config.txtpb"
A completed Pod manifest should look similar to the following:
apiVersion: apps/v1 kind: Pod metadata: name: my-pod labels: k8s-app: my-pod annotations: networking.gke.io/default-interface: 'eth0' networking.gke.io/interfaces: | [ {"interfaceName":"eth0","network":"default"}, {"interfaceName":"eth1","network":"gvnic-1"}, {"interfaceName":"eth2","network":"rdma-0"}, {"interfaceName":"eth3","network":"rdma-1"}, {"interfaceName":"eth4","network":"rdma-2"}, {"interfaceName":"eth5","network":"rdma-3"}, {"interfaceName":"eth6","network":"rdma-4"}, {"interfaceName":"eth7","network":"rdma-5"}, {"interfaceName":"eth8","network":"rdma-6"}, {"interfaceName":"eth9","network":"rdma-7"} ] spec: ... volumes: - name: library-dir-host hostPath: path: /home/kubernetes/bin/nvidia - name: gib hostPath: path: /home/kubernetes/bin/gib containers: - name: my-container volumeMounts: - name: library-dir-host mountPath: /usr/local/nvidia - name: gib mountPath: /usr/local/gib env: - name: LD_LIBRARY_PATH value: /usr/local/nvidia/lib64 resources: limits: nvidia.com/gpu: 8 ...
Deploy and run a NCCL test
To validate the functionality of the provisioned cluster, you can run a NCCL test. Run a basic two node test, or if you have a larger number of nodes, we recommend using the NCCL test with Topology Aware Scheduling.
Two node test
Run the two node test:
To deploy a NCCL test workload of two test Pods running on two A3 Ultra nodes, apply the following manifest:
kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/refs/heads/master/gpudirect-rdma/nccl-test.yaml
Trigger a NCCL all-gather test for the A3 Ultra nodes:
kubectl exec nccl-test-host-1 -it -- /usr/local/gib/scripts/run_nccl_tests.sh -t all_gather -b 1K -e 8G nccl-host-1 nccl-host-2
The output should be similar to the following:
# size count type redop root time algbw busbw #wrong time algbw busbw #wrong # (B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s) 1024 16 float none -1 56.00 0.02 0.02 0 55.59 0.02 0.02 0 2048 32 float none -1 55.79 0.04 0.03 0 55.57 0.04 0.03 0 4096 64 float none -1 56.29 0.07 0.07 0 57.35 0.07 0.07 0 8192 128 float none -1 56.44 0.15 0.14 0 56.32 0.15 0.14 0 16384 256 float none -1 57.57 0.28 0.27 0 57.60 0.28 0.27 0 32768 512 float none -1 57.92 0.57 0.53 0 59.35 0.55 0.52 0 65536 1024 float none -1 59.92 1.09 1.03 0 60.15 1.09 1.02 0 131072 2048 float none -1 59.21 2.21 2.08 0 61.82 2.12 1.99 0 262144 4096 float none -1 63.58 4.12 3.87 0 63.34 4.14 3.88 0 524288 8192 float none -1 64.89 8.08 7.57 0 65.09 8.06 7.55 0 1048576 16384 float none -1 80.90 12.96 12.15 0 77.49 13.53 12.69 0 2097152 32768 float none -1 80.22 26.14 24.51 0 79.88 26.25 24.61 0 4194304 65536 float none -1 82.86 50.62 47.45 0 82.47 50.86 47.68 0 8388608 131072 float none -1 95.83 87.53 82.06 0 93.27 89.94 84.32 0 16777216 262144 float none -1 122.8 136.58 128.04 0 121.7 137.86 129.24 0 33554432 524288 float none -1 180.6 185.75 174.14 0 179.2 187.19 175.49 0 67108864 1048576 float none -1 279.7 239.90 224.90 0 277.0 242.26 227.12 0 134217728 2097152 float none -1 507.5 264.46 247.93 0 485.1 276.66 259.37 0 268435456 4194304 float none -1 866.3 309.88 290.51 0 864.0 310.70 291.28 0 536870912 8388608 float none -1 1576.1 340.62 319.33 0 1558.2 344.54 323.01 0 1073741824 16777216 float none -1 3096.6 346.75 325.08 0 3047.5 352.33 330.31 0 2147483648 33554432 float none -1 6148.0 349.30 327.47 0 6034.3 355.88 333.64 0 4294967296 67108864 float none -1 12226 351.29 329.33 0 12000 357.92 335.55 0 8589934592 134217728 float none -1 24391 352.17 330.16 0 23920 359.11 336.67 0 # Out of bounds values : 0 OK # Avg bus bandwidth : 120.94
Test with Topology Aware Scheduling (TAS)
If you have a larger number of nodes than two, we recommend using the following test, which uses TAS. Follow the steps in the next sections to prepare and run the test on your cluster.
Set up your cluster with Jobset and TAS plugin
Install the TAS plugin:
Clone the
container-engine-accelerators
git repository:cd ~ git clone https://github.com/GoogleCloudPlatform/container-engine-accelerators.git
Apply the TAS plugin:
cd container-engine-accelerators/gke-topology-scheduler kubectl create configmap topology-scheduler-scripts --namespace kube-system --from-file=schedule-daemon.py=schedule-daemon.py --from-file=label-nodes-daemon.py=label-nodes-daemon.py kubectl apply -f service-account.yaml kubectl apply -f schedule-daemon.yaml kubectl apply -f label-nodes-daemon.yaml
Deploy a NCCL test workload with TAS
Create the following
nccl-jobset-test.yaml
manifest, replacingNUM_NODES
with the number of nodes in the node pool:apiVersion: jobset.x-k8s.io/v1alpha2 kind: JobSet metadata: name: nccl-allgather spec: ttlSecondsAfterFinished: 1200 suspend: False network: enableDNSHostnames: true replicatedJobs: - name: worker template: spec: parallelism:
NUM_NODES completions:NUM_NODES template: metadata: annotations: networking.gke.io/default-interface: 'eth0' networking.gke.io/interfaces: | [ {"interfaceName":"eth0","network":"default"}, {"interfaceName":"eth1","network":"gvnic-1"}, {"interfaceName":"eth2","network":"rdma-0"}, {"interfaceName":"eth3","network":"rdma-1"}, {"interfaceName":"eth4","network":"rdma-2"}, {"interfaceName":"eth5","network":"rdma-3"}, {"interfaceName":"eth6","network":"rdma-4"}, {"interfaceName":"eth7","network":"rdma-5"}, {"interfaceName":"eth8","network":"rdma-6"}, {"interfaceName":"eth9","network":"rdma-7"} ] spec: activeDeadlineSeconds: 3600 restartPolicy: Never nodeSelector: cloud.google.com/gke-accelerator: nvidia-h200-141gb tolerations: - key: cloud.google.com/gke-queued effect: NoSchedule value: "true" - key: "nvidia.com/gpu" operator: "Exists" effect: "NoSchedule" setHostnameAsFQDN: true volumes: - name: gib hostPath: path: /home/kubernetes/bin/gib - name: nvidia hostPath: path: /home/kubernetes/bin/nvidia - name: lib64 hostPath: path: /lib64 - name: shared-memory emptyDir: medium: "Memory" sizeLimit: 250Gi schedulingGates: - name: "gke.io/topology-aware-auto-nccl-test" containers: - name: nccl-test stdin: true tty: true image: us-docker.pkg.dev/gce-ai-infra/gpudirect-gib/nccl-plugin-gib-diagnostic:v1.0.3 securityContext: privileged: true env: - name: MY_NODE_NAME valueFrom: fieldRef: fieldPath: spec.nodeName - name: OMPI_ALLOW_RUN_AS_ROOT value: "1" - name: OMPI_ALLOW_RUN_AS_ROOT_CONFIRM value: "1" - name: N_NODES value: "NUM_NODES " - name: LD_LIBRARY_PATH value: /usr/local/nvidia/lib64 command: - bash - -c - | set -x echo "Starting workload container on ${MY_NODE_NAME} for $N_NODES benchmark" # Install ping apt update -y apt install -y iputils-ping # Start sshd /scripts/container_entry.sh daemon & # Get helper variables to form all hostnames export POSTFIX=$(hostname | cut -d . -f 2-) export WORKERS_BASENAME=$(hostname | cut -d . -f 1 | rev | cut -d - -f 2- | rev ) export NODE_RANK=$JOB_COMPLETION_INDEX # For every worker, wait till online and add to hostfile for i in `seq 0 $(($N_NODES-1))`; do OTHER=${WORKERS_BASENAME}-${i}.${POSTFIX} until ssh -p 222 -o StrictHostKeyChecking=no $OTHER hostname; do echo Waiting for ${OTHER}... sleep 10 done echo ${OTHER} port=222 slots=8 | tee -a /tmp/hostfile; done cat /tmp/hostfile # Launch from head node if [[ "${NODE_RANK}" -eq "0" ]]; then # World Level = 0x0, Rail Aligned = 0x7 export NCCL_TESTS_SPLIT_MASK="0x0"; # Force use of libnccl-gib export NCCL_NET=gIB # Set all the correct libnccl-gib environment variables source /usr/local/gib/scripts/set_nccl_env.sh # Get all relevant NCCL / env vars to pass to all workers ENV_VARS=$(echo ${!NCCL*} ${!OMPI*} LD_LIBRARY_PATH PATH | sed 's/ / -x /g') mpirun --hostfile /tmp/hostfile \ -x $ENV_VARS \ -mca plm_rsh_no_tree_spawn 1 \ --mca orte_keep_fqdn_hostnames 1 \ --mca btl self,tcp \ --mca btl_tcp_if_include eth0 \ --bind-to none \ --mca plm_rsh_agent "ssh -q -o LogLevel=ERROR -o StrictHostKeyChecking=no -p 222" \ /third_party/nccl-tests/build/all_gather_perf -b 1K -e 8G -f 2 -g 1 -w 5 --iters 100 -c 1 else while ping -c 1 ${WORKERS_BASENAME}-0.${POSTFIX}; do sleep 5 done fi exit 0 volumeMounts: - name: nvidia mountPath: /usr/local/nvidia - name: gib mountPath: /usr/local/gib - name: shared-memory mountPath: /dev/shm resources: limits: nvidia.com/gpu: 8 requests: nvidia.com/gpu: 8 restartPolicy: NeverEnsure that you understand that the following about this manifest:
- The JobSet is a Headless Service with the same name as the JobSet name,
in this case
nccl-allgather
. - The
gke.io/topology-aware-auto-nccl-test
scheduling gate is used to ensure the Pods are scheduled for colocation. - The
parallelism
andcompletions
fields are both set to the number of nodes with which you want to run the NCCL test.
- The JobSet is a Headless Service with the same name as the JobSet name,
in this case
Apply the manifest:
kubectl apply -f nccl-jobset-test.yaml
Confirm that the workload is admitted:
kubectl get jobsets
The output is similar to the following:
NAME RESTARTS COMPLETED AGE nccl-allgather 3s
Confirm that the workload is in the
Completed
state:kubectl get pods
The output is similar to the following:
NAME READY STATUS RESTARTS AGE nccl-allgather-worker-0-0-n9s6j 0/1 Completed 0 9m34s nccl-allgather-worker-0-1-rsf7r 0/1 Completed 0 9m34s ...
The logs of the Pod with the pattern
nccl-allgather-worker-0-0-.*
contain the results of the test.Fetch the logs for this Pod:
kubectl logs $(kubectl get pods -o go-template='{{range .items}}{{.metadata.name}}{{"\n"}}{{end}}' | grep nccl-allgather-worker-0-0)
The output should be similar to the following:
# size count type redop root time algbw busbw #wrong time algbw busbw #wrong # (B) (elements) (us) (GB/s) (GB/s) (us) ∂ç (GB/s) (GB/s) 1024 16 float none -1 54.07 0.02 0.02 0 55.80 0.02 0.02 0 2048 32 float none -1 55.46 0.04 0.03 0 55.31 0.04 0.03 0 4096 64 float none -1 55.59 0.07 0.07 0 55.38 0.07 0.07 0 8192 128 float none -1 56.05 0.15 0.14 0 55.92 0.15 0.14 0 16384 256 float none -1 57.08 0.29 0.27 0 57.75 0.28 0.27 0 32768 512 float none -1 57.49 0.57 0.53 0 57.22 0.57 0.54 0 65536 1024 float none -1 59.20 1.11 1.04 0 59.20 1.11 1.04 0 131072 2048 float none -1 59.58 2.20 2.06 0 63.57 2.06 1.93 0 262144 4096 float none -1 63.87 4.10 3.85 0 63.61 4.12 3.86 0 524288 8192 float none -1 64.83 8.09 7.58 0 64.40 8.14 7.63 0 1048576 16384 float none -1 79.74 13.15 12.33 0 76.66 13.68 12.82 0 2097152 32768 float none -1 78.41 26.74 25.07 0 79.05 26.53 24.87 0 4194304 65536 float none -1 83.21 50.41 47.26 0 81.25 51.62 48.39 0 8388608 131072 float none -1 94.35 88.91 83.35 0 99.07 84.68 79.38 0 16777216 262144 float none -1 122.9 136.55 128.02 0 121.7 137.83 129.21 0 33554432 524288 float none -1 184.2 182.19 170.80 0 178.1 188.38 176.60 0 67108864 1048576 float none -1 294.7 227.75 213.51 0 277.7 241.62 226.52 0 134217728 2097152 float none -1 495.4 270.94 254.00 0 488.8 274.60 257.43 0 268435456 4194304 float none -1 877.5 305.92 286.80 0 861.3 311.65 292.17 0 536870912 8388608 float none -1 1589.8 337.71 316.60 0 1576.2 340.61 319.33 0 1073741824 16777216 float none -1 3105.7 345.74 324.13 0 3069.2 349.85 327.98 0 2147483648 33554432 float none -1 6161.7 348.52 326.74 0 6070.7 353.75 331.64 0 4294967296 67108864 float none -1 12305 349.03 327.22 0 12053 356.35 334.08 0 8589934592 134217728 float none -1 24489 350.77 328.85 0 23991 358.05 335.67 0 # Out of bounds values : 0 OK # Avg bus bandwidth : 120.248
What's next
- To learn about scheduling workloads on your Hypercompute Cluster with GKE using Topology Aware Scheduling (TAS) and Kueue, see Schedule GKE workloads with Topology Aware Scheduling.
- To learn about managing common events relevant to GKE
clusters and AI workloads, see Manage Hypercompute Clusters with
GKE.