Use Ray to fine-tune Gemma 3 for vision tasks on GKE


This tutorial shows you how to fine-tune a Gemma 3 model by using the Ray framework on a multi-node GKE cluster. The cluster uses two A4 virtual machine (VM) instances, each with eight NVIDIA B200 GPUs attached.

The content of this tutorial is divided into two parts:

  1. Preparing the Ray Cluster on top of a GKE Autopilot cluster.
  2. Running distributed training job, utilizing 2 A4 instances, with 8 B200 GPUs each.

This tutorial is intended for machine learning (ML) engineers, researchers, platform administrators and operators, and for data and AI specialists who are interested in distributing an AI workload across multiple nodes and GPUs.

Objectives

  • Access a Gemma 3 model by using Hugging Face.

  • Prepare your environment.

  • Create a GKE Autopilot cluster with the Ray Operator installed on it.

  • Configure the Ray Cluster on the GKE cluster to accept Ray Jobs.

  • Configure and run a Ray Job that tunes the Gemma 3 model based on visual input.

  • Monitor your workload.

  • Clean up.

Costs

In this document, you use the following billable components of Google Cloud:

To generate a cost estimate based on your projected usage, use the pricing calculator.

New Google Cloud users might be eligible for a free trial.

Before you begin

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.

  3. If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.

  4. To initialize the gcloud CLI, run the following command:

    gcloud init
  5. Create or select a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.
    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the required API:

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    gcloud services enable gcloud services enable compute.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com container.googleapis.com
  8. Install the Google Cloud CLI.

  9. If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.

  10. To initialize the gcloud CLI, run the following command:

    gcloud init
  11. Create or select a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.
    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  12. Verify that billing is enabled for your Google Cloud project.

  13. Enable the required API:

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    gcloud services enable gcloud services enable compute.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com container.googleapis.com
  14. Grant roles to your user account. Run the following command once for each of the following IAM roles: roles/compute.admin, roles/iam.serviceAccountUser, roles/file.editor, roles/storage.admin, roles/container.clusterAdmin, roles/serviceusage.serviceUsageAdmin

    gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE

    Replace the following:

    • PROJECT_ID: your project ID.
    • USER_IDENTIFIER: the identifier for your user account—for example, myemail@example.com.
    • ROLE: the IAM role that you grant to your user account.
  15. Enable the default service account for your Google Cloud project:
    gcloud iam service-accounts enable PROJECT_NUMBER-compute@developer.gserviceaccount.com \
        --project=PROJECT_ID

    Replace PROJECT_NUMBER with your project number. To review your project number, see Get an existing project.

  16. Grant the Editor role (roles/editor) to the default service account:
    gcloud projects add-iam-policy-binding PROJECT_ID \
        --member="serviceAccount:PROJECT_NUMBER-compute@developer.gserviceaccount.com" \
        --role=roles/editor
  17. Create local authentication credentials for your user account:
    gcloud auth application-default login
  18. Sign in to or create a Hugging Face account.

Access Gemma 3 by using Hugging Face

To use Hugging Face to access Gemma 3, do the following:

  1. Sign the consent agreement to use Gemma 3.

  2. Create a Hugging Face read access token.

  3. Copy and save the read access token value. You use it later in this tutorial.

Prepare your environment

Prepare your environment by configuring the necessary settings and setting the environment variables.

Run the following:

gcloud config set billing/quota_project $PROJECT_ID
export RESERVATION=RESERVATION_URL
export REGION=REGION
export CLUSTER_NAME=CLUSTER_NAME
export HF_TOKEN=HF_TOKEN
export NETWORK=default
export GCS_BUCKET=GCS_BUCKET

Replace the following:

  • RESERVATION_URL: the URL of the reservation that you want to use to create your cluster. Based on the project in which the reservation exists, specify one of the following values:
    • The reservation exists in your project: RESERVATION_NAME
    • The reservation exists in a different project, and your project can use the reservation: projects/RESERVATION_PROJECT_ID/reservations/RESERVATION_NAME. Both full and partial URLs are accepted. For example, you can use projects/RESERVATION_PROJECT_ID/reservations/RESERVATION_NAME.
  • REGION: the region where you want to create your GKE cluster. You can only create the cluster in the region where your reservation exists.
  • CLUSTER_NAME: the name of the GKE cluster to create.
  • HF_TOKEN: the Hugging Face token that you created in an earlier step.
  • GCS_BUCKET: the name of the bucket where you store the results from the training checkpoint.

Create a GKE cluster in Autopilot mode

To create a GKE cluster in Autopilot mode, run the following:

gcloud container clusters create-auto $CLUSTER_NAME \
    --enable-ray-operator \
    --enable-ray-cluster-monitoring \
    --enable-ray-cluster-logging \
    --location=$REGION

It might take some time to complete the creation of the GKE cluster. To verify if Google Cloud has finished creating your cluster, go to Kubernetes clusters on the Google Cloud console.

Create a Kubernetes secret for Hugging Face credentials

In Cloud Shell, to create a Kubernetes secret for Hugging Face credentials, do the following:

  1. Configure kubectl to connect to your cluster:

    gcloud container clusters get-credentials $CLUSTER_NAME \
        --region=$REGION
    
  2. Create a Kubernetes secret to store your Hugging Face token:

    kubectl create secret generic hf-secret \
        --from-literal=hf_api_token=${HF_TOKEN} \
        --dry-run=client -o yaml | kubectl apply -f -
    

Create the Google Cloud Storage bucket

If you want to use a new bucket to store your training artifacts, run the following:

gcloud storage buckets create gs://$GCS_BUCKET --location=$REGION

If you want to use an existing bucket, you can skip this step. However, you must ensure that your bucket is in the same region as your cluster.

Save your training code as a ConfigMap

To avoid the need to embed your training script into a container image, you store it as a ConfigMap in your cluster. This ConfigMap is mounted onto the Pod file systems, which lets you update the training script without having to recreate the entire Ray cluster.

  1. Navigate to the code folder and create a new file.

    Copy the following code/vision_train.py code into this new file:

    import argparse
    import datetime
    import ray
    import ray.train.huggingface.transformers
    import torch
    from PIL import Image
    from datasets import load_dataset
    from peft import LoraConfig
    from ray.train import ScalingConfig, RunConfig
    from ray.train.torch import TorchTrainer
    from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
    from trl import SFTConfig
    from trl import SFTTrainer
    
    # System message for the assistant
    system_message = "You are an expert product description writer for Amazon."
    
    # User prompt that combines the user query and the schema
    user_prompt = """Create a Short Product description based on the provided <PRODUCT> and <CATEGORY> and image.
    Only return description. The description should be SEO optimized and for a better mobile search experience.
    
    <PRODUCT>
    {product}
    </PRODUCT>
    
    <CATEGORY>
    {category}
    </CATEGORY>
    """
    
    def get_args():
        parser = argparse.ArgumentParser()
        parser.add_argument("--model_id", type=str, default="google/gemma-3-4b-it", help="Hugging Face model ID")
        # parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face token for private models")
        parser.add_argument("--dataset_name", type=str, default="philschmid/amazon-product-descriptions-vlm", help="Hugging Face dataset name")
        parser.add_argument("--output_dir", type=str, default="gemma-3-4b-seo-optimized", help="Directory to save model checkpoints")
        parser.add_argument("--gcs_bucket", type=str, required=True, help="GCS bucket name used to synchronize tasks and save checkpoints")
        parser.add_argument("--push_to_hub", help="Push model to Hugging Face hub", action="store_true")
    
        # LoRA arguments
        parser.add_argument("--lora_r", type=int, default=16, help="LoRA attention dimension")
        parser.add_argument("--lora_alpha", type=int, default=16, help="LoRA alpha scaling factor")
        parser.add_argument("--lora_dropout", type=float, default=0.05, help="LoRA dropout probability")
    
        # SFTConfig arguments
        parser.add_argument("--max_seq_length", type=int, default=512, help="Maximum sequence length")
        parser.add_argument("--num_train_epochs", type=int, default=3, help="Number of training epochs")
        parser.add_argument("--per_device_train_batch_size", type=int, default=1, help="Batch size per device during training")
        parser.add_argument("--gradient_accumulation_steps", type=int, default=4, help="Gradient accumulation steps")
        parser.add_argument("--learning_rate", type=float, default=2e-4, help="Learning rate")
        parser.add_argument("--logging_steps", type=int, default=10, help="Log every X steps")
        parser.add_argument("--save_strategy", type=str, default="epoch", help="Checkpoint save strategy")
        parser.add_argument("--save_steps", type=int, default=100, help="Save checkpoint every X steps")
    
        return parser.parse_args()
    
    # Convert dataset to OAI messages
    def format_data(sample):
        return {
            "messages": [
                {
                    "role": "system",
                    "content": [{"type": "text", "text": system_message}],
                },
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": user_prompt.format(
                                product=sample["Product Name"],
                                category=sample["Category"],
                            ),
                        },
                        {
                            "type": "image",
                            "image": sample["image"],
                        },
                    ],
                },
                {
                    "role": "assistant",
                    "content": [{"type": "text", "text": sample["description"]}],
                },
            ],
        }
    
    def process_vision_info(messages: list[dict]) -> list[Image.Image]:
        image_inputs = []
        # Iterate through each conversation
        for msg in messages:
            # Get content (ensure it's a list)
            content = msg.get("content", [])
            if not isinstance(content, list):
                content = [content]
    
            # Check each content element for images
            for element in content:
                if isinstance(element, dict) and ("image" in element or element.get("type") == "image"):
                    # Get the image and convert to RGB
                    if "image" in element:
                        image = element["image"]
                    else:
                        image = element
                    image_inputs.append(image.convert("RGB"))
        return image_inputs
    
    def train(args):
        # Load dataset from the hub
        dataset = load_dataset(args.dataset_name, split="train", streaming=True)
    
        # Convert dataset to OAI messages
        # need to use list comprehension to keep Pil.Image type, .mape convert image to bytes
        dataset = [format_data(sample) for sample in dataset]
    
        # Hugging Face model id
        model_id = args.model_id
    
        # Check if GPU benefits from bfloat16
        if torch.cuda.get_device_capability()[0] < 8:
            raise ValueError("GPU does not support bfloat16, please use a GPU that supports bfloat16.")
    
        # Define model init arguments
        model_kwargs = dict(
            attn_implementation="eager",  # Use "flash_attention_2" when running on Ampere or newer GPU
            torch_dtype=torch.bfloat16,  # What torch dtype to use, defaults to auto
            # device_map="auto",  # Let torch decide how to load the model
        )
    
        # BitsAndBytesConfig int-4 config
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=model_kwargs["torch_dtype"],
            bnb_4bit_quant_storage=model_kwargs["torch_dtype"],
        )
    
        # Load model and tokenizer
        model = AutoModelForImageTextToText.from_pretrained(model_id, **model_kwargs)
        processor = AutoProcessor.from_pretrained(model_id, use_fast=True)
    
        peft_config = LoraConfig(
            lora_alpha=args.lora_alpha,
            lora_dropout=args.lora_dropout,
            r=args.lora_r,
            bias="none",
            target_modules="all-linear",
            task_type="CAUSAL_LM",
            modules_to_save=[
                "lm_head",
                "embed_tokens",
            ],
        )
    
        args = SFTConfig(
            output_dir=args.output_dir,  # directory to save and repository id
            num_train_epochs=args.num_train_epochs,  # number of training epochs
            per_device_train_batch_size=args.per_device_train_batch_size,  # batch size per device during training
            gradient_accumulation_steps=args.gradient_accumulation_steps,  # number of steps before performing a backward/update pass
            gradient_checkpointing=True,  # use gradient checkpointing to save memory
            optim="adamw_torch_fused",  # use fused adamw optimizer
            logging_steps=args.logging_steps,  # log every N steps
            save_strategy=args.save_strategy,  # save checkpoint every epoch
            learning_rate=args.learning_rate,  # learning rate, based on QLoRA paper
            bf16=True,  # use bfloat16 precision
            max_grad_norm=0.3,  # max gradient norm based on QLoRA paper
            warmup_ratio=0.03,  # warmup ratio based on QLoRA paper
            lr_scheduler_type="constant",  # use constant learning rate scheduler
            push_to_hub=args.push_to_hub,  # push model to hub
            report_to="tensorboard",  # report metrics to tensorboard
            gradient_checkpointing_kwargs={
                "use_reentrant": False
            },  # use reentrant checkpointing
            dataset_text_field="",  # need a dummy field for collator
            dataset_kwargs={"skip_prepare_dataset": True},  # important for collator
        )
        args.remove_unused_columns = False  # important for collator
    
        # Create a data collator to encode text and image pairs
        def collate_fn(examples):
            texts = []
            images = []
            for example in examples:
                image_inputs = process_vision_info(example["messages"])
                text = processor.apply_chat_template(
                    example["messages"], add_generation_prompt=False, tokenize=False
                )
                texts.append(text.strip())
                images.append(image_inputs)
    
            # Tokenize the texts and process the images
            batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
    
            # The labels are the input_ids, and we mask the padding tokens and image tokens in the loss computation
            labels = batch["input_ids"].clone()
    
            # Mask image tokens
            image_token_id = [
                processor.tokenizer.convert_tokens_to_ids(
                    processor.tokenizer.special_tokens_map["boi_token"]
                )
            ]
            # Mask tokens for not being used in the loss computation
            labels[labels == processor.tokenizer.pad_token_id] = -100
            labels[labels == image_token_id] = -100
            labels[labels == 262144] = -100
    
            batch["labels"] = labels
            return batch
    
        trainer = SFTTrainer(
            model=model,
            args=args,
            train_dataset=dataset,
            peft_config=peft_config,
            processing_class=processor,
            data_collator=collate_fn,
        )
    
        callback = ray.train.huggingface.transformers.RayTrainReportCallback()
        trainer.add_callback(callback)
        trainer = ray.train.huggingface.transformers.prepare_trainer(trainer)
    
        # Start training, the model will be automatically saved to the Hub and the output directory
        trainer.train()
    
        # Save the final model again to the Hugging Face Hub
        trainer.save_model()
    
    if __name__ == "__main__":
        args = get_args()
        print("Starting training task!")
        training_name = f"gemma_vision_train_{datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')}"
    
        gcs_bucket = args.gcs_bucket
        if not gcs_bucket.startswith("gs://"):
            gcs_bucket = "gs://" + gcs_bucket
    
        run_config = RunConfig(
            storage_path=gcs_bucket,
            name=training_name,
        )
        scaling_config = ScalingConfig(num_workers=16, use_gpu=True, accelerator_type="B200")
        ray_trainer = TorchTrainer(train, train_loop_config=args, scaling_config=scaling_config, run_config=run_config)
        print("Commencing training!")
        result = ray_trainer.fit()
    
  2. Save the file.

  3. Create a ConfigMap object in your cluster:

    kubectl create cm ray-job-cm --from-file=code -o yaml --dry-run=client | kubectl apply -f -
    

    To update the training script, you rerun the preceding command. It might take a minute before any changes propagate to all the pods.

Configure Ray Cluster

  1. To create a Ray Cluster in your GKE cluster, save the following YAML as ray_cluster.yamlfile.

    apiVersion: ray.io/v1
    kind: RayCluster
    metadata:
      name: gemma3-tuning
    spec:
      rayVersion: '2.48.0'
      headGroupSpec:
        rayStartParams:
          dashboard-host: '0.0.0.0'
        template:
          metadata:
          spec:
            containers:
            - name: ray-head
              image: rayproject/ray:2.48.0
              ports:
              - containerPort: 6379
                name: gcs
              - containerPort: 8265
                name: dashboard
              - containerPort: 10001
                name: client
              resources:
                limits:
                  cpu: "24"
                  ephemeral-storage: "9Gi"
                  memory: "64Gi"
                requests:
                  cpu: "24"
                  ephemeral-storage: "9Gi"
                  memory: "64Gi"
              env:
                - name: HF_TOKEN
                  valueFrom:
                    secretKeyRef:
                      name: hf-secret
                      key: hf_api_token
              volumeMounts:
                - name: job-code
                  mountPath: /code/
                - mountPath: /mnt/local-ssd/
                  name: local-storage
            volumes:
              - name: job-code
                configMap:
                  name: ray-job-cm
              - name: local-storage
                emptyDir: { }
      workerGroupSpecs:
      - replicas: 2
        minReplicas: 1
        maxReplicas: 5
        groupName: gpu-group
        rayStartParams: {}
        template:
          spec:
            containers:
            - name: ray-worker
              image: rayproject/ray:2.48.0-gpu
              resources:
                limits:
                  nvidia.com/gpu: "8"
                requests:
                  nvidia.com/gpu: "8"
              env:
                - name: HF_TOKEN
                  valueFrom:
                    secretKeyRef:
                      name: hf-secret
                      key: hf_api_token
              volumeMounts:
                - name: job-code
                  mountPath: /code/
                - mountPath: /mnt/local-ssd/
                  name: local-storage
            volumes:
              - name: job-code
                configMap:
                  name: ray-job-cm
              - name: local-storage
                emptyDir: { }
            nodeSelector:
              cloud.google.com/gke-accelerator: nvidia-b200
              cloud.google.com/reservation-name: $RESERVATION
              cloud.google.com/reservation-affinity: "specific"
              cloud.google.com/gke-gpu-driver-version: latest
    
  2. Apply this YAML definition to your cluster using the following command:

    envsubst < ray_cluster.yaml | kubectl apply -f -
    

    The $RESERVATION flag is automatically replaced with the name you configured as environment variable.

    Ray Operator creates the raylet pods, which in turn triggers autoscaling of the cluster to provide those pods with the appropriate nodes. Three pods are created in your cluster: one head node, and two worker nodes. The worker nodes are equipped with the B200 GPUs.

  3. To verify that all three of the pods are ready, run the following:

    kubectl get pods
    

    The pod list of a ready Ray Cluster is similar to the following:

    NAME                                   READY   STATUS    RESTARTS   AGE
    gemma3-tuning-gpu-group-worker-s4h8f   2/2     Running   0          16m
    gemma3-tuning-gpu-group-worker-stg5f   2/2     Running   0          5m34s
    gemma3-tuning-head-zbdvp               2/2     Running   0          16m
    

Schedule a training job

  1. Save the following as a ray_job.yaml file:

    apiVersion: ray.io/v1
    kind: RayJob
    metadata:
      name: test-ray-job
    spec:
      entrypoint: python /code/vision_train.py --gcs_bucket $GCS_BUCKET
      runtimeEnvYAML: |
        pip:
          - torch==2.8.0
          - torchvision==0.23.0
          - ray==2.48.0
          - transformers==4.55.2
          - datasets==4.0.0
          - evaluate==0.4.5
          - accelerate==1.10.0
          - pillow==11.3.0
          - bitsandbytes==0.47.0
          - trl==0.21.0
          - peft==0.17.0
      clusterSelector:
        ray.io/cluster: gemma3-tuning
    
  2. Submit the RayJob definition to your RayCluster:

    envsubst < ray_job.yaml | kubectl apply -f -
    
  3. Check that a new Pod is in your cluster:

    kubectl get pods
    

    Make a note of the full name of the test-ray-job- Pod that you see in the output. This name is unique to your job.

  4. Inspect the progress of your training. Replace gemma-training-ray-job-UNIQUE_ID with the unique Pod name that you noted in the previous step.

    kubectl logs -f <gemma-training-ray-job-UNIQUE_ID>
    

    The output that you see is similar to the following:

    2025-08-20 08:29:34,966 INFO cli.py:41 -- Job submission server address: http://gemma3-tuning-head-svc.default.svc.cluster.local:8265
    2025-08-20 08:29:34,991 SUCC cli.py:65 -- -----------------------------------------------
    2025-08-20 08:29:34,991 SUCC cli.py:66 -- Job 'test-ray-job-82mm7' submitted successfully
    2025-08-20 08:29:34,991 SUCC cli.py:67 -- -----------------------------------------------
    2025-08-20 08:29:34,992 INFO cli.py:291 -- Next steps
    2025-08-20 08:29:34,992 INFO cli.py:292 -- Query the logs of the job:
    2025-08-20 08:29:34,992 INFO cli.py:294 -- ray job logs test-ray-job-82mm7
    2025-08-20 08:29:34,992 INFO cli.py:296 -- Query the status of the job:
    2025-08-20 08:29:34,992 INFO cli.py:298 -- ray job status test-ray-job-82mm7
    2025-08-20 08:29:34,992 INFO cli.py:300 -- Request the job to be stopped:
    2025-08-20 08:29:34,992 INFO cli.py:302 -- ray job stop test-ray-job-82mm7
    2025-08-20 08:29:35,003 INFO cli.py:312 -- Tailing logs until the job exits (disable with --no-wait):
    2025-08-20 08:29:34,982 INFO job_manager.py:531 -- Runtime env is setting up.
    Starting training task!
    Commencing training!
    2025-08-20 08:30:08,498 INFO worker.py:1606 -- Using address 10.76.0.17:6379 set in the environment variable RAY_ADDRESS
    2025-08-20 08:30:08,506 INFO worker.py:1747 -- Connecting to existing Ray cluster at address: 10.76.0.17:6379...
    2025-08-20 08:30:08,527 INFO worker.py:1918 -- Connected to Ray cluster. View the dashboard at 10.76.0.17:8265
    2025-08-20 08:30:08,701 INFO tune.py:253 -- Initializing Ray automatically. For cluster usage or custom Ray initialization, call `ray.init(...)` before `<FrameworkTrainer>(...)`.
    2025-08-20 08:30:08,951 WARNING tune_controller.py:2132 -- The maximum number of pending trials has been automatically set to the number of available cluster CPUs, which is high (519 CPUs/pending trials). If you're running an experiment with a large number of trials, this could lead to scheduling overhead. In this case, consider setting the `TUNE_MAX_PENDING_TRIALS_PG` environment variable to the desired maximum number of concurrent pending trials.
    2025-08-20 08:30:08,953 WARNING tune_controller.py:2132 -- The maximum number of pending trials has been automatically set to the number of available cluster CPUs, which is high (519 CPUs/pending trials). If you're running an experiment with a large number of trials, this could lead to scheduling overhead. In this case, consider setting the `TUNE_MAX_PENDING_TRIALS_PG` environment variable to the desired maximum number of concurrent pending trials.
    
    View detailed results here: YOUR_GCS_BUCKET/gemma_vision_train_2025_08_20_08_30_07
    To visualize your results with TensorBoard, run: `tensorboard --logdir /tmp/ray/session_2025-08-20_04-43-14_215096_1/artifacts/2025-08-20_08-30-08/gemma_vision_train_2025_08_20_08_30_07/driver_artifacts`
    
    Training started with configuration:
    ╭──────────────────────────────────────────────────────────────────────╮
    │ Training config                                                      │
    ├──────────────────────────────────────────────────────────────────────┤
    │ train_loop_config/dataset_name                  ...-descriptions-vlm │
    │ train_loop_config/gcs_bucket                    ...-bucket-yooo-west │
    │ train_loop_config/gradient_accumulation_steps                      4 │
    │ train_loop_config/learning_rate                               0.0002 │
    │ train_loop_config/logging_steps                                   10 │
    │ train_loop_config/lora_alpha                                      16 │
    │ train_loop_config/lora_dropout                                  0.05 │
    │ train_loop_config/lora_r                                          16 │
    │ train_loop_config/max_seq_length                                 512 │
    │ train_loop_config/model_id                      google/gemma-3-4b-it │
    │ train_loop_config/num_train_epochs                                 3 │
    │ train_loop_config/output_dir                    ...-4b-seo-optimized │
    │ train_loop_config/per_device_train_batch_size                      1 │
    │ train_loop_config/push_to_hub                                  False │
    │ train_loop_config/save_steps                                     100 │
    │ train_loop_config/save_strategy                                epoch │
    ╰──────────────────────────────────────────────────────────────────────╯
    (RayTrainWorker pid=45455, ip=10.76.0.71) Setting up process group for: env:// [rank=0, world_size=16]
    (TorchTrainer pid=45197, ip=10.76.0.71) Started distributed worker processes:
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45455) world_rank=0, local_rank=0, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45450) world_rank=1, local_rank=1, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45454) world_rank=2, local_rank=2, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45448) world_rank=3, local_rank=3, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45453) world_rank=4, local_rank=4, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45452) world_rank=5, local_rank=5, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45451) world_rank=6, local_rank=6, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=4c934ab2f646a578b03cc335586f30b943e811b645526a74c50bfca1, ip=10.76.0.71, pid=45449) world_rank=7, local_rank=7, node_rank=0
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45729) world_rank=8, local_rank=0, node_rank=1
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45726) world_rank=9, local_rank=1, node_rank=1
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45728) world_rank=10, local_rank=2, node_rank=1
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45727) world_rank=11, local_rank=3, node_rank=1
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45725) world_rank=12, local_rank=4, node_rank=1
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45724) world_rank=13, local_rank=5, node_rank=1
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45723) world_rank=14, local_rank=6, node_rank=1
    (TorchTrainer pid=45197, ip=10.76.0.71) - (node_id=c0db52b44f891f3d6a1cedcbea4c6beb2c8434c66ef414dc15e65743, ip=10.76.0.135, pid=45722) world_rank=15, local_rank=7, node_rank=1
    
    ...
    
    Training finished iteration 3 at 2025-08-20 08:40:43. Total running time: 10min 34s
    ╭─────────────────────────────────────────╮
    │ Training result                         │
    ├─────────────────────────────────────────┤
    │ checkpoint_dir_name   checkpoint_000002 │
    │ time_this_iter_s               152.6374 │
    │ time_total_s                  525.88585 │
    │ training_iteration                    3 │
    │ epoch                           2.75294 │
    │ grad_norm                      47.27161 │
    │ learning_rate                    0.0002 │
    │ loss                            22.5275 │
    │ mean_token_accuracy             0.90325 │
    │ num_tokens                     1583017. │
    │ step                                 60 │
    ╰─────────────────────────────────────────╯
    
    ...
    
    Training completed after 3 iterations at 2025-08-20 08:40:52. Total running time: 10min 43s
    2025-08-20 08:40:53,113 INFO tune.py:1009 -- Wrote the latest version of all result files and experiment state to 'YOUR_GCS_BUCKET/gemma_vision_train_2025_08_20_08_30_07' in 0.1663s.
    
    2025-08-20 08:40:58,304 SUCC cli.py:65 -- ----------------------------------
    2025-08-20 08:40:58,305 SUCC cli.py:66 -- Job 'test-ray-job-82mm7' succeeded
    2025-08-20 08:40:58,305 SUCC cli.py:67 -- ----------------------------------
    

    Monitor your workload

You can use the dashboard in Ray to monitor the workloads that are scheduled in your cluster.

To access this dashboard, you need to set up port-forwarding to your cluster by running the following command in a new terminal window:

kubectl port-forward service/gemma3-tuning-head-svc 8265:8265 > fwd.log 2>&1 &
  1. Open the following link in your browser: [http://localhost:8265](http://localhost:8265).

  2. Optionally, if you're using Cloud Shell, after you run the command in the previous step, you can click the Web Preview button, as shown in the following image:

    Web Preview button.

    Select the Change port option, enter 8265, and then click Change and Preview. The Ray Dashboard opens in a new tab.

Clean up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, either delete the project that contains the resources, or keep the project and delete the individual resources.

Delete your project

Delete a Google Cloud project:

gcloud projects delete PROJECT_ID

Delete your resources

  1. To delete the Ray Cluster and release the GPU-powered node, run the following:

    kubectl delete -f ray_cluster.yaml
    

    GKE automatically scales down your cluster and releases the A4 machines used by Ray.

  2. To delete the entire GKE cluster, run the following:

    gcloud container clusters delete $CLUSTER_NAME \
    --region=$REGION
    

What's next