Detectar vários objetos em um arquivo local (Beta)

Executar a detecção de vários objetos em uma imagem usando um arquivo local (para lançamento Beta).

Exemplo de código

Java

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.

/**
 * Detects localized objects in the specified local image.
 *
 * @param filePath The path to the file to perform localized object detection on.
 * @param out A {@link PrintStream} to write detected objects to.
 * @throws Exception on errors while closing the client.
 * @throws IOException on Input/Output errors.
 */
public static void detectLocalizedObjects(String filePath, PrintStream out)
    throws Exception, IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder()
          .addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
          .setImage(img)
          .build();
  requests.add(request);

  // Perform the request
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    // Display the results
    for (AnnotateImageResponse res : responses) {
      for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
        out.format("Object name: %s\n", entity.getName());
        out.format("Confidence: %s\n", entity.getScore());
        out.format("Normalized Vertices:\n");
        entity
            .getBoundingPoly()
            .getNormalizedVerticesList()
            .forEach(vertex -> out.format("- (%s, %s)\n", vertex.getX(), vertex.getY()));
      }
    }
  }
}

Python

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Python.

def localize_objects(path):
    """Localize objects in the local image.

    Args:
    path: The path to the local file.
    """
    from google.cloud import vision_v1p3beta1 as vision
    client = vision.ImageAnnotatorClient()

    with open(path, 'rb') as image_file:
        content = image_file.read()
    image = vision.Image(content=content)

    objects = client.object_localization(
        image=image).localized_object_annotations

    print('Number of objects found: {}'.format(len(objects)))
    for object_ in objects:
        print('\n{} (confidence: {})'.format(object_.name, object_.score))
        print('Normalized bounding polygon vertices: ')
        for vertex in object_.bounding_poly.normalized_vertices:
            print(' - ({}, {})'.format(vertex.x, vertex.y))

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte o navegador de exemplos do Google Cloud.