Text in einem Dokument erkennen

Zeichnen Sie Rahmen um den in einem Dokument erkannten Text.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Python API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import argparse
from enum import Enum

from google.cloud import vision
from PIL import Image, ImageDraw



class FeatureType(Enum):
    PAGE = 1
    BLOCK = 2
    PARA = 3
    WORD = 4
    SYMBOL = 5


def draw_boxes(image, bounds, color):
    """Draws a border around the image using the hints in the vector list.

    Args:
        image: the input image object.
        bounds: list of coordinates for the boxes.
        color: the color of the box.

    Returns:
        An image with colored bounds added.
    """
    draw = ImageDraw.Draw(image)

    for bound in bounds:
        draw.polygon(
            [
                bound.vertices[0].x,
                bound.vertices[0].y,
                bound.vertices[1].x,
                bound.vertices[1].y,
                bound.vertices[2].x,
                bound.vertices[2].y,
                bound.vertices[3].x,
                bound.vertices[3].y,
            ],
            None,
            color,
        )
    return image


def get_document_bounds(image_file, feature):
    """Finds the document bounds given an image and feature type.

    Args:
        image_file: path to the image file.
        feature: feature type to detect.

    Returns:
        List of coordinates for the corresponding feature type.
    """
    client = vision.ImageAnnotatorClient()

    bounds = []

    with open(image_file, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.document_text_detection(image=image)
    document = response.full_text_annotation

    # Collect specified feature bounds by enumerating all document features
    for page in document.pages:
        for block in page.blocks:
            for paragraph in block.paragraphs:
                for word in paragraph.words:
                    for symbol in word.symbols:
                        if feature == FeatureType.SYMBOL:
                            bounds.append(symbol.bounding_box)

                    if feature == FeatureType.WORD:
                        bounds.append(word.bounding_box)

                if feature == FeatureType.PARA:
                    bounds.append(paragraph.bounding_box)

            if feature == FeatureType.BLOCK:
                bounds.append(block.bounding_box)

    # The list `bounds` contains the coordinates of the bounding boxes.
    return bounds




def render_doc_text(filein, fileout):
    """Outlines document features (blocks, paragraphs and words) given an image.

    Args:
        filein: path to the input image.
        fileout: path to the output image.
    """
    image = Image.open(filein)
    bounds = get_document_bounds(filein, FeatureType.BLOCK)
    draw_boxes(image, bounds, "blue")
    bounds = get_document_bounds(filein, FeatureType.PARA)
    draw_boxes(image, bounds, "red")
    bounds = get_document_bounds(filein, FeatureType.WORD)
    draw_boxes(image, bounds, "yellow")

    if fileout != 0:
        image.save(fileout)
    else:
        image.show()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("detect_file", help="The image for text detection.")
    parser.add_argument("-out_file", help="Optional output file", default=0)
    args = parser.parse_args()

    render_doc_text(args.detect_file, args.out_file)

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.