光學字元辨識 (OCR)
Vision API 可偵測及擷取圖片中的文字。有兩項註解功能支援光學字元辨識 (OCR):
TEXT_DETECTION
會偵測並從任何圖片中擷取文字。舉例來說,相片可能含有路牌或交通號誌。JSON 包含整個擷取的字串、個別字詞,以及這些字詞的周框。DOCUMENT_TEXT_DETECTION
也會從圖片中擷取文字,但回覆內容經過最佳化,適用於密集文字和文件。JSON 包含網頁、區塊、段落、字詞和換行資訊。
文字偵測要求
設定 Google Cloud 專案和驗證
如果您尚未建立 Google Cloud 專案,請立即建立。展開這個部分即可查看操作說明。
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Install the Google Cloud CLI.
-
設定 gcloud CLI 以使用您的聯合身分。
詳情請參閱「 使用聯合身分登入 gcloud CLI」。
-
如要初始化 gcloud CLI,請執行下列指令:
gcloud init
偵測本機圖片中的文字
您可以使用 Vision API 對本機圖片檔執行特徵偵測。
如果是 REST 要求,請在要求主體中,以 base64 編碼字串的形式傳送圖片檔案內容。
如果是
gcloud
和用戶端程式庫要求,請在要求中指定本機圖片的路徑。gcloud
如要執行文字偵測,請使用
gcloud ml vision detect-text
指令,如下列範例所示:gcloud ml vision detect-text ./path/to/local/file.jpg
REST
使用任何要求資料之前,請先替換以下項目:
- BASE64_ENCODED_IMAGE:二進位圖片資料的 Base64 表示法 (ASCII 字串)。這個字串應類似下列字串:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- PROJECT_ID:您的 Google Cloud 專案 ID。
HTTP 方法和網址:
POST https://vision.googleapis.com/v1/images:annotate
JSON 要求主體:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "type": "TEXT_DETECTION" } ] } ] }
如要傳送要求,請選擇以下其中一個選項:
curl
將要求主體儲存在名為
request.json
的檔案中,然後執行下列指令:curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"PowerShell
將要求主體儲存在名為
request.json
的檔案中,然後執行下列指令:$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content如果要求成功,伺服器會傳回
200 OK
HTTP 狀態碼與 JSON 格式的回應。TEXT_DETECTION
回應會包含偵測到的詞組、其周框,以及個別字詞和周框。回應
{ "responses": [ { "textAnnotations": [ { "locale": "en", "description": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n", "boundingPoly": { "vertices": [ { "x": 341, "y": 828 }, { "x": 2249, "y": 828 }, { "x": 2249, "y": 1993 }, { "x": 341, "y": 1993 } ] } }, { "description": "WAITING?", "boundingPoly": { "vertices": [ { "x": 352, "y": 828 }, { "x": 2248, "y": 911 }, { "x": 2238, "y": 1148 }, { "x": 342, "y": 1065 } ] } }, { "description": "PLEASE", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1233 }, { "x": 1907, "y": 1263 }, { "x": 1902, "y": 1383 }, { "x": 1205, "y": 1353 } ] } }, { "description": "TURN", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1418 }, { "x": 1730, "y": 1441 }, { "x": 1724, "y": 1564 }, { "x": 1205, "y": 1541 } ] } }, { "description": "OFF", "boundingPoly": { "vertices": [ { "x": 1792, "y": 1443 }, { "x": 2128, "y": 1458 }, { "x": 2122, "y": 1581 }, { "x": 1787, "y": 1566 } ] } }, { "description": "YOUR", "boundingPoly": { "vertices": [ { "x": 1219, "y": 1603 }, { "x": 1746, "y": 1629 }, { "x": 1740, "y": 1759 }, { "x": 1213, "y": 1733 } ] } }, { "description": "ENGINE", "boundingPoly": { "vertices": [ { "x": 1222, "y": 1771 }, { "x": 1944, "y": 1834 }, { "x": 1930, "y": 1992 }, { "x": 1208, "y": 1928 } ] } } ], "fullTextAnnotation": { "pages": [ ... ] }, "paragraphs": [ ... ] }, "words": [ ... }, "symbols": [ ... } ] } ], "blockType": "TEXT" }, ... ] } ], "text": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n" } } ] }
Go
在試用這個範例之前,請先按照Go「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Go API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// detectText gets text from the Vision API for an image at the given file path. func detectText(w io.Writer, file string) error { ctx := context.Background() client, err := vision.NewImageAnnotatorClient(ctx) if err != nil { return err } f, err := os.Open(file) if err != nil { return err } defer f.Close() image, err := vision.NewImageFromReader(f) if err != nil { return err } annotations, err := client.DetectTexts(ctx, image, nil, 10) if err != nil { return err } if len(annotations) == 0 { fmt.Fprintln(w, "No text found.") } else { fmt.Fprintln(w, "Text:") for _, annotation := range annotations { fmt.Fprintf(w, "%q\n", annotation.Description) } } return nil }
Java
在試用這個範例之前,請先按照使用用戶端程式庫的 Vision API 快速入門導覽課程中的 Java 設定操作說明進行操作。詳情請參閱 Vision API Java 參考說明文件。
import com.google.cloud.vision.v1.AnnotateImageRequest; import com.google.cloud.vision.v1.AnnotateImageResponse; import com.google.cloud.vision.v1.BatchAnnotateImagesResponse; import com.google.cloud.vision.v1.EntityAnnotation; import com.google.cloud.vision.v1.Feature; import com.google.cloud.vision.v1.Image; import com.google.cloud.vision.v1.ImageAnnotatorClient; import com.google.protobuf.ByteString; import java.io.FileInputStream; import java.io.IOException; import java.util.ArrayList; import java.util.List; public class DetectText { public static void detectText() throws IOException { // TODO(developer): Replace these variables before running the sample. String filePath = "path/to/your/image/file.jpg"; detectText(filePath); } // Detects text in the specified image. public static void detectText(String filePath) throws IOException { List<AnnotateImageRequest> requests = new ArrayList<>(); ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath)); Image img = Image.newBuilder().setContent(imgBytes).build(); Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build(); AnnotateImageRequest request = AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build(); requests.add(request); // Initialize client that will be used to send requests. This client only needs to be created // once, and can be reused for multiple requests. After completing all of your requests, call // the "close" method on the client to safely clean up any remaining background resources. try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) { BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests); List<AnnotateImageResponse> responses = response.getResponsesList(); for (AnnotateImageResponse res : responses) { if (res.hasError()) { System.out.format("Error: %s%n", res.getError().getMessage()); return; } // For full list of available annotations, see http://g.co/cloud/vision/docs for (EntityAnnotation annotation : res.getTextAnnotationsList()) { System.out.format("Text: %s%n", annotation.getDescription()); System.out.format("Position : %s%n", annotation.getBoundingPoly()); } } } } }
Node.js
在試用這個範例之前,請先按照Node.js「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Node.js API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
const vision = require('@google-cloud/vision'); // Creates a client const client = new vision.ImageAnnotatorClient(); /** * TODO(developer): Uncomment the following line before running the sample. */ // const fileName = 'Local image file, e.g. /path/to/image.png'; // Performs text detection on the local file const [result] = await client.textDetection(fileName); const detections = result.textAnnotations; console.log('Text:'); detections.forEach(text => console.log(text));
Python
在試用這個範例之前,請先按照Python「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Python API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
def detect_text(path): """Detects text in the file.""" from google.cloud import vision client = vision.ImageAnnotatorClient() with open(path, "rb") as image_file: content = image_file.read() image = vision.Image(content=content) response = client.text_detection(image=image) texts = response.text_annotations print("Texts:") for text in texts: print(f'\n"{text.description}"') vertices = [ f"({vertex.x},{vertex.y})" for vertex in text.bounding_poly.vertices ] print("bounds: {}".format(",".join(vertices))) if response.error.message: raise Exception( "{}\nFor more info on error messages, check: " "https://cloud.google.com/apis/design/errors".format(response.error.message) )
其他語言
C#: 請按照用戶端程式庫頁面上的C# 設定說明操作, 然後前往 .NET 適用的 Vision 參考說明文件。
PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明操作, 然後前往 PHP 適用的 Vision 參考文件。
Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision 參考說明文件。
偵測遠端圖片中的文字
您可以透過 Vision API,對位於 Cloud Storage 或網路上的遠端圖片檔案執行特徵偵測。如要傳送遠端檔案要求,請在要求內文中指定檔案的網頁網址或 Cloud Storage URI。
gcloud
如要執行文字偵測,請使用
gcloud ml vision detect-text
指令,如下列範例所示:gcloud ml vision detect-text gs://cloud-samples-data/vision/ocr/sign.jpg
REST
使用任何要求資料之前,請先替換以下項目:
- CLOUD_STORAGE_IMAGE_URI:Cloud Storage 值區中有效圖片檔案的路徑。您必須至少擁有檔案的讀取權限。
範例:
gs://cloud-samples-data/vision/ocr/sign.jpg
- PROJECT_ID:您的 Google Cloud 專案 ID。
HTTP 方法和網址:
POST https://vision.googleapis.com/v1/images:annotate
JSON 要求主體:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "type": "TEXT_DETECTION" } ] } ] }
如要傳送要求,請選擇以下其中一個選項:
curl
將要求主體儲存在名為
request.json
的檔案中,然後執行下列指令:curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"PowerShell
將要求主體儲存在名為
request.json
的檔案中,然後執行下列指令:$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content如果要求成功,伺服器會傳回
200 OK
HTTP 狀態碼與 JSON 格式的回應。TEXT_DETECTION
回應會包含偵測到的詞組、其周框,以及個別字詞和周框。回應
{ "responses": [ { "textAnnotations": [ { "locale": "en", "description": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n", "boundingPoly": { "vertices": [ { "x": 341, "y": 828 }, { "x": 2249, "y": 828 }, { "x": 2249, "y": 1993 }, { "x": 341, "y": 1993 } ] } }, { "description": "WAITING?", "boundingPoly": { "vertices": [ { "x": 352, "y": 828 }, { "x": 2248, "y": 911 }, { "x": 2238, "y": 1148 }, { "x": 342, "y": 1065 } ] } }, { "description": "PLEASE", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1233 }, { "x": 1907, "y": 1263 }, { "x": 1902, "y": 1383 }, { "x": 1205, "y": 1353 } ] } }, { "description": "TURN", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1418 }, { "x": 1730, "y": 1441 }, { "x": 1724, "y": 1564 }, { "x": 1205, "y": 1541 } ] } }, { "description": "OFF", "boundingPoly": { "vertices": [ { "x": 1792, "y": 1443 }, { "x": 2128, "y": 1458 }, { "x": 2122, "y": 1581 }, { "x": 1787, "y": 1566 } ] } }, { "description": "YOUR", "boundingPoly": { "vertices": [ { "x": 1219, "y": 1603 }, { "x": 1746, "y": 1629 }, { "x": 1740, "y": 1759 }, { "x": 1213, "y": 1733 } ] } }, { "description": "ENGINE", "boundingPoly": { "vertices": [ { "x": 1222, "y": 1771 }, { "x": 1944, "y": 1834 }, { "x": 1930, "y": 1992 }, { "x": 1208, "y": 1928 } ] } } ], "fullTextAnnotation": { "pages": [ ... ] }, "paragraphs": [ ... ] }, "words": [ ... }, "symbols": [ ... } ] } ], "blockType": "TEXT" }, ... ] } ], "text": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n" } } ] }
Go
在試用這個範例之前,請先按照Go「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Go API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// detectText gets text from the Vision API for an image at the given file path. func detectTextURI(w io.Writer, file string) error { ctx := context.Background() client, err := vision.NewImageAnnotatorClient(ctx) if err != nil { return err } image := vision.NewImageFromURI(file) annotations, err := client.DetectTexts(ctx, image, nil, 10) if err != nil { return err } if len(annotations) == 0 { fmt.Fprintln(w, "No text found.") } else { fmt.Fprintln(w, "Text:") for _, annotation := range annotations { fmt.Fprintf(w, "%q\n", annotation.Description) } } return nil }
Java
在試用這個範例之前,請先按照使用用戶端程式庫的 Vision API 快速入門導覽課程中的 Java 設定操作說明進行操作。詳情請參閱 Vision API Java 參考說明文件。
import com.google.cloud.vision.v1.AnnotateImageRequest; import com.google.cloud.vision.v1.AnnotateImageResponse; import com.google.cloud.vision.v1.BatchAnnotateImagesResponse; import com.google.cloud.vision.v1.EntityAnnotation; import com.google.cloud.vision.v1.Feature; import com.google.cloud.vision.v1.Image; import com.google.cloud.vision.v1.ImageAnnotatorClient; import com.google.cloud.vision.v1.ImageSource; import java.io.IOException; import java.util.ArrayList; import java.util.List; public class DetectTextGcs { public static void detectTextGcs() throws IOException { // TODO(developer): Replace these variables before running the sample. String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg"; detectTextGcs(filePath); } // Detects text in the specified remote image on Google Cloud Storage. public static void detectTextGcs(String gcsPath) throws IOException { List<AnnotateImageRequest> requests = new ArrayList<>(); ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build(); Image img = Image.newBuilder().setSource(imgSource).build(); Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build(); AnnotateImageRequest request = AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build(); requests.add(request); // Initialize client that will be used to send requests. This client only needs to be created // once, and can be reused for multiple requests. After completing all of your requests, call // the "close" method on the client to safely clean up any remaining background resources. try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) { BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests); List<AnnotateImageResponse> responses = response.getResponsesList(); for (AnnotateImageResponse res : responses) { if (res.hasError()) { System.out.format("Error: %s%n", res.getError().getMessage()); return; } // For full list of available annotations, see http://g.co/cloud/vision/docs for (EntityAnnotation annotation : res.getTextAnnotationsList()) { System.out.format("Text: %s%n", annotation.getDescription()); System.out.format("Position : %s%n", annotation.getBoundingPoly()); } } } } }
Node.js
在試用這個範例之前,請先按照Node.js「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Node.js API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// Imports the Google Cloud client libraries const vision = require('@google-cloud/vision'); // Creates a client const client = new vision.ImageAnnotatorClient(); /** * TODO(developer): Uncomment the following lines before running the sample. */ // const bucketName = 'Bucket where the file resides, e.g. my-bucket'; // const fileName = 'Path to file within bucket, e.g. path/to/image.png'; // Performs text detection on the gcs file const [result] = await client.textDetection(`gs://${bucketName}/${fileName}`); const detections = result.textAnnotations; console.log('Text:'); detections.forEach(text => console.log(text));
Python
在試用這個範例之前,請先按照Python「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Python API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
def detect_text_uri(uri): """Detects text in the file located in Google Cloud Storage or on the Web.""" from google.cloud import vision client = vision.ImageAnnotatorClient() image = vision.Image() image.source.image_uri = uri response = client.text_detection(image=image) texts = response.text_annotations print("Texts:") for text in texts: print(f'\n"{text.description}"') vertices = [ f"({vertex.x},{vertex.y})" for vertex in text.bounding_poly.vertices ] print("bounds: {}".format(",".join(vertices))) if response.error.message: raise Exception( "{}\nFor more info on error messages, check: " "https://cloud.google.com/apis/design/errors".format(response.error.message) )
其他語言
C#: 請按照用戶端程式庫頁面上的C# 設定說明操作, 然後前往 .NET 適用的 Vision 參考說明文件。
PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明操作, 然後前往 PHP 適用的 Vision 參考文件。
Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision 參考說明文件。
指定語言 (選用)
這兩種 OCR 要求的其中一項支援一或多個
languageHints
,可指定圖片中任何文字的語言。不過,空值通常會產生最佳結果,因為省略值可啟用自動語言偵測功能。如果語言使用拉丁字母,則不需要設定languageHints
。在少數情況下,如果知道圖片中文字的語言,設定提示有助於獲得更準確的結果 (但如果提示錯誤,可能會造成重大阻礙)。如果指定的一或多種語言不是支援的語言,文字偵測就會傳回錯誤。如要提供語言提示,請修改要求主體 (
request.json
檔案),在imageContext.languageHints
欄位中提供其中一種支援語言的字串,如下列範例所示:{ "requests": [ { "image": { "source": { "imageUri": "IMAGE_URL" } }, "features": [ { "type": "DOCUMENT_TEXT_DETECTION" } ], "imageContext": { "languageHints": ["en-t-i0-handwrit"] } } ] }
多區域支援
您現在可以指定洲際資料儲存空間和 OCR 處理作業。目前支援的地區如下:
us
:僅限美國eu
:歐盟
位置
您可以控管專案資源的儲存和處理位置。具體來說,您可以設定 Cloud Vision,只在歐盟境內儲存及處理資料。
根據預設,Cloud Vision 會在「全球」位置儲存及處理資源,也就是說,Cloud Vision 無法保證資源會保留在特定位置或區域。如果選擇「歐盟」,Google 只會在歐盟儲存及處理資料。您和使用者可以從任何位置存取資料。
使用 API 設定位置資訊
Vision API 支援全球 API 端點 (
vision.googleapis.com
),以及兩個以區域為準的端點:歐盟端點 (eu-vision.googleapis.com
) 和美國端點 (us-vision.googleapis.com
)。請使用這些端點進行特定區域的處理作業。舉例來說,如要只在歐盟儲存及處理資料,請在 REST API 呼叫中使用 URIeu-vision.googleapis.com
,取代vision.googleapis.com
:- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:annotate
- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:asyncBatchAnnotate
- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:annotate
- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:asyncBatchAnnotate
如要只在美國儲存及處理資料,請使用上述方法搭配美國端點 (
us-vision.googleapis.com
)。使用用戶端程式庫設定位置
Vision API 用戶端程式庫預設會存取全域 API 端點 (
vision.googleapis.com
)。如要只在歐盟境內儲存及處理資料,您必須明確設定端點 (eu-vision.googleapis.com
)。下列程式碼範例說明如何設定這項設定。REST
使用任何要求資料之前,請先替換以下項目:
- REGION_ID:有效的區域位置 ID 之一:
us
:僅限美國eu
:歐盟
- CLOUD_STORAGE_IMAGE_URI:Cloud Storage 值區中有效圖片檔案的路徑。您必須至少擁有檔案的讀取權限。
範例:
gs://cloud-samples-data/vision/ocr/sign.jpg
- PROJECT_ID:您的 Google Cloud 專案 ID。
HTTP 方法和網址:
POST https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate
JSON 要求主體:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "type": "TEXT_DETECTION" } ] } ] }
如要傳送要求,請選擇以下其中一個選項:
curl
將要求主體儲存在名為
request.json
的檔案中,然後執行下列指令:curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate"PowerShell
將要求主體儲存在名為
request.json
的檔案中,然後執行下列指令:$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate" | Select-Object -Expand Content如果要求成功,伺服器會傳回
200 OK
HTTP 狀態碼與 JSON 格式的回應。TEXT_DETECTION
回應會包含偵測到的詞組、其周框,以及個別字詞和周框。回應
{ "responses": [ { "textAnnotations": [ { "locale": "en", "description": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n", "boundingPoly": { "vertices": [ { "x": 341, "y": 828 }, { "x": 2249, "y": 828 }, { "x": 2249, "y": 1993 }, { "x": 341, "y": 1993 } ] } }, { "description": "WAITING?", "boundingPoly": { "vertices": [ { "x": 352, "y": 828 }, { "x": 2248, "y": 911 }, { "x": 2238, "y": 1148 }, { "x": 342, "y": 1065 } ] } }, { "description": "PLEASE", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1233 }, { "x": 1907, "y": 1263 }, { "x": 1902, "y": 1383 }, { "x": 1205, "y": 1353 } ] } }, { "description": "TURN", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1418 }, { "x": 1730, "y": 1441 }, { "x": 1724, "y": 1564 }, { "x": 1205, "y": 1541 } ] } }, { "description": "OFF", "boundingPoly": { "vertices": [ { "x": 1792, "y": 1443 }, { "x": 2128, "y": 1458 }, { "x": 2122, "y": 1581 }, { "x": 1787, "y": 1566 } ] } }, { "description": "YOUR", "boundingPoly": { "vertices": [ { "x": 1219, "y": 1603 }, { "x": 1746, "y": 1629 }, { "x": 1740, "y": 1759 }, { "x": 1213, "y": 1733 } ] } }, { "description": "ENGINE", "boundingPoly": { "vertices": [ { "x": 1222, "y": 1771 }, { "x": 1944, "y": 1834 }, { "x": 1930, "y": 1992 }, { "x": 1208, "y": 1928 } ] } } ], "fullTextAnnotation": { "pages": [ ... ] }, "paragraphs": [ ... ] }, "words": [ ... }, "symbols": [ ... } ] } ], "blockType": "TEXT" }, ... ] } ], "text": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n" } } ] }
Go
在試用這個範例之前,請先按照Go「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Go API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
import ( "context" "fmt" vision "cloud.google.com/go/vision/apiv1" "google.golang.org/api/option" ) // setEndpoint changes your endpoint. func setEndpoint(endpoint string) error { // endpoint := "eu-vision.googleapis.com:443" ctx := context.Background() client, err := vision.NewImageAnnotatorClient(ctx, option.WithEndpoint(endpoint)) if err != nil { return fmt.Errorf("NewImageAnnotatorClient: %w", err) } defer client.Close() return nil }
Java
在試用這個範例之前,請先按照使用用戶端程式庫的 Vision API 快速入門導覽課程中的 Java 設定操作說明進行操作。詳情請參閱 Vision API Java 參考說明文件。
ImageAnnotatorSettings settings = ImageAnnotatorSettings.newBuilder().setEndpoint("eu-vision.googleapis.com:443").build(); // Initialize client that will be used to send requests. This client only needs to be created // once, and can be reused for multiple requests. After completing all of your requests, call // the "close" method on the client to safely clean up any remaining background resources. ImageAnnotatorClient client = ImageAnnotatorClient.create(settings);
Node.js
在試用這個範例之前,請先按照Node.js「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Node.js API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// Imports the Google Cloud client library const vision = require('@google-cloud/vision'); async function setEndpoint() { // Specifies the location of the api endpoint const clientOptions = {apiEndpoint: 'eu-vision.googleapis.com'}; // Creates a client const client = new vision.ImageAnnotatorClient(clientOptions); // Performs text detection on the image file const [result] = await client.textDetection('./resources/wakeupcat.jpg'); const labels = result.textAnnotations; console.log('Text:'); labels.forEach(label => console.log(label.description)); } setEndpoint();
Python
在試用這個範例之前,請先按照Python「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Python API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
from google.cloud import vision client_options = {"api_endpoint": "eu-vision.googleapis.com"} client = vision.ImageAnnotatorClient(client_options=client_options)
試試看
請試試下方的文字偵測和文件文字偵測。您可以點選「執行」,使用已指定的圖片 (
gs://cloud-samples-data/vision/ocr/sign.jpg
),也可以指定自己的圖片。如要試用文件文字偵測功能,請將
type
的值更新為DOCUMENT_TEXT_DETECTION
。要求主體:
{ "requests": [ { "features": [ { "type": "TEXT_DETECTION" } ], "image": { "source": { "imageUri": "gs://cloud-samples-data/vision/ocr/sign.jpg" } } } ] }
- BASE64_ENCODED_IMAGE:二進位圖片資料的 Base64 表示法 (ASCII 字串)。這個字串應類似下列字串: