網路偵測會偵測圖片的網路參照。
<0x

類別 | 回應 |
---|---|
網頁實體 |
|
完全相符的圖片 |
|
部分相符的圖片 |
|
含有相符圖片的頁面 |
|
外觀相似的圖片 |
|
最佳猜測標籤 | rio carnival 2019 dancers |
網路偵測要求
設定 Google Cloud 專案和驗證
如果您尚未建立 Google Cloud 專案,請立即建立。展開這個部分即可查看操作說明。
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Install the Google Cloud CLI.
-
如果您使用外部識別資訊提供者 (IdP),請先 使用聯合身分登入 gcloud CLI。
-
如要初始化 gcloud CLI,請執行下列指令:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Install the Google Cloud CLI.
-
如果您使用外部識別資訊提供者 (IdP),請先 使用聯合身分登入 gcloud CLI。
-
如要初始化 gcloud CLI,請執行下列指令:
gcloud init
- BASE64_ENCODED_IMAGE:二進位圖片資料的 Base64 表示法 (ASCII 字串)。這個字串應類似下列字串:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- RESULTS_INT:(選填) 要傳回的結果整數值。如果省略
"maxResults"
欄位及其值,API 會傳回預設值,也就是 10 個結果。這個欄位不適用於下列特徵類型:TEXT_DETECTION
、DOCUMENT_TEXT_DETECTION
或CROP_HINTS
。 - PROJECT_ID:您的 Google Cloud 專案 ID。
- CLOUD_STORAGE_IMAGE_URI:Cloud Storage 值區中有效圖片檔案的路徑。您必須至少擁有檔案的讀取權限。
範例:
gs://cloud-samples-data/vision/web/carnaval.jpeg
- RESULTS_INT:(選填) 要傳回的結果整數值。如果省略
"maxResults"
欄位及其值,API 會傳回預設值,也就是 10 個結果。這個欄位不適用於下列特徵類型:TEXT_DETECTION
、DOCUMENT_TEXT_DETECTION
或CROP_HINTS
。 - PROJECT_ID:您的 Google Cloud 專案 ID。
使用本機圖片偵測網路實體
您可以使用 Vision API 對本機圖片檔執行特徵偵測。
如果是 REST 要求,請在要求主體中,以 base64 編碼字串的形式傳送圖片檔案內容。
如果是 gcloud
和用戶端程式庫要求,請在要求中指定本機圖片的路徑。
REST
使用任何要求資料之前,請先替換以下項目:
HTTP 方法和網址:
POST https://vision.googleapis.com/v1/images:annotate
JSON 要求主體:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "maxResults": RESULTS_INT, "type": "WEB_DETECTION" }, ] } ] }
如要傳送要求,請選擇以下其中一個選項:
curl
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
如果要求成功,伺服器會傳回 200 OK
HTTP 狀態碼與 JSON 格式的回應。
回覆:
回應
{ "responses": [ { "webDetection": { "webEntities": [ { "entityId": "/m/02p7_j8", "score": 1.44225, "description": "Carnival in Rio de Janeiro" }, { "entityId": "/m/06gmr", "score": 1.2913725, "description": "Rio de Janeiro" }, { "entityId": "/m/04cx88", "score": 0.78465, "description": "Brazilian Carnival" }, { "entityId": "/m/09l9f", "score": 0.7166, "description": "Carnival" }, ... ], "fullMatchingImages": [ { "url": "https://1000lugaresparair.files.wordpress.com/2017/11/quinten-de-graaf-278848.jpg" }, ... ], "partialMatchingImages": [ { "url": "https://www.linnanneito.fi/wp-content/uploads/sambakarnevaali-riossa.jpg" }, ... ], "pagesWithMatchingImages": [ { "url": "https://www.intrepidtravel.com/us/brazil/rio-carnival-122873", "pageTitle": "\u003cb\u003eRio Carnival\u003c/b\u003e | Intrepid Travel US", "partialMatchingImages": [ { "url": "https://www.intrepidtravel.com/sites/intrepid/files/styles/large/public/elements/product/hero/GGSR-Brazil-rio-carnival-ladies.jpg" }, ... ], "visuallySimilarImages": [ { "url": "https://pbs.twimg.com/media/DVoQOx6WkAIpHKF.jpg" }, ... ], "bestGuessLabels": [ { "label": "rio carnival", "languageCode": "en" } ] } } ] }
Go
在試用這個範例之前,請先按照Go「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Go API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWeb(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
f, err := os.Open(file)
if err != nil {
return err
}
defer f.Close()
image, err := vision.NewImageFromReader(f)
if err != nil {
return err
}
web, err := client.DetectWeb(ctx, image, nil)
if err != nil {
return err
}
fmt.Fprintln(w, "Web properties:")
if len(web.FullMatchingImages) != 0 {
fmt.Fprintln(w, "\tFull image matches:")
for _, full := range web.FullMatchingImages {
fmt.Fprintf(w, "\t\t%s\n", full.Url)
}
}
if len(web.PagesWithMatchingImages) != 0 {
fmt.Fprintln(w, "\tPages with this image:")
for _, page := range web.PagesWithMatchingImages {
fmt.Fprintf(w, "\t\t%s\n", page.Url)
}
}
if len(web.WebEntities) != 0 {
fmt.Fprintln(w, "\tEntities:")
fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
for _, entity := range web.WebEntities {
fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
}
}
if len(web.BestGuessLabels) != 0 {
fmt.Fprintln(w, "\tBest guess labels:")
for _, label := range web.BestGuessLabels {
fmt.Fprintf(w, "\t\t%s\n", label.Label)
}
}
return nil
}
Java
在試用這個範例之前,請先按照使用用戶端程式庫的 Vision API 快速入門導覽課程中的 Java 設定操作說明進行操作。詳情請參閱 Vision API Java 參考說明文件。
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.WebDetection;
import com.google.cloud.vision.v1.WebDetection.WebEntity;
import com.google.cloud.vision.v1.WebDetection.WebImage;
import com.google.cloud.vision.v1.WebDetection.WebLabel;
import com.google.cloud.vision.v1.WebDetection.WebPage;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectWebDetections {
public static void detectWebDetections() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "path/to/your/image/file.jpg";
detectWebDetections(filePath);
}
// Finds references to the specified image on the web.
public static void detectWebDetections(String filePath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));
Image img = Image.newBuilder().setContent(imgBytes).build();
Feature feat = Feature.newBuilder().setType(Type.WEB_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// Search the web for usages of the image. You could use these signals later
// for user input moderation or linking external references.
// For a full list of available annotations, see http://g.co/cloud/vision/docs
WebDetection annotation = res.getWebDetection();
System.out.println("Entity:Id:Score");
System.out.println("===============");
for (WebEntity entity : annotation.getWebEntitiesList()) {
System.out.println(
entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
}
for (WebLabel label : annotation.getBestGuessLabelsList()) {
System.out.format("%nBest guess label: %s", label.getLabel());
}
System.out.println("%nPages with matching images: Score%n==");
for (WebPage page : annotation.getPagesWithMatchingImagesList()) {
System.out.println(page.getUrl() + " : " + page.getScore());
}
System.out.println("%nPages with partially matching images: Score%n==");
for (WebImage image : annotation.getPartialMatchingImagesList()) {
System.out.println(image.getUrl() + " : " + image.getScore());
}
System.out.println("%nPages with fully matching images: Score%n==");
for (WebImage image : annotation.getFullMatchingImagesList()) {
System.out.println(image.getUrl() + " : " + image.getScore());
}
System.out.println("%nPages with visually similar images: Score%n==");
for (WebImage image : annotation.getVisuallySimilarImagesList()) {
System.out.println(image.getUrl() + " : " + image.getScore());
}
}
}
}
}
Node.js
在試用這個範例之前,請先按照Node.js「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Node.js API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = 'Local image file, e.g. /path/to/image.png';
// Detect similar images on the web to a local file
const [result] = await client.webDetection(fileName);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
console.log(
`Full matches found: ${webDetection.fullMatchingImages.length}`
);
webDetection.fullMatchingImages.forEach(image => {
console.log(` URL: ${image.url}`);
console.log(` Score: ${image.score}`);
});
}
if (webDetection.partialMatchingImages.length) {
console.log(
`Partial matches found: ${webDetection.partialMatchingImages.length}`
);
webDetection.partialMatchingImages.forEach(image => {
console.log(` URL: ${image.url}`);
console.log(` Score: ${image.score}`);
});
}
if (webDetection.webEntities.length) {
console.log(`Web entities found: ${webDetection.webEntities.length}`);
webDetection.webEntities.forEach(webEntity => {
console.log(` Description: ${webEntity.description}`);
console.log(` Score: ${webEntity.score}`);
});
}
if (webDetection.bestGuessLabels.length) {
console.log(
`Best guess labels found: ${webDetection.bestGuessLabels.length}`
);
webDetection.bestGuessLabels.forEach(label => {
console.log(` Label: ${label.label}`);
});
}
Python
在試用這個範例之前,請先按照Python「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Python API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
def detect_web(path):
"""Detects web annotations given an image."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.web_detection(image=image)
annotations = response.web_detection
if annotations.best_guess_labels:
for label in annotations.best_guess_labels:
print(f"\nBest guess label: {label.label}")
if annotations.pages_with_matching_images:
print(
"\n{} Pages with matching images found:".format(
len(annotations.pages_with_matching_images)
)
)
for page in annotations.pages_with_matching_images:
print(f"\n\tPage url : {page.url}")
if page.full_matching_images:
print(
"\t{} Full Matches found: ".format(len(page.full_matching_images))
)
for image in page.full_matching_images:
print(f"\t\tImage url : {image.url}")
if page.partial_matching_images:
print(
"\t{} Partial Matches found: ".format(
len(page.partial_matching_images)
)
)
for image in page.partial_matching_images:
print(f"\t\tImage url : {image.url}")
if annotations.web_entities:
print("\n{} Web entities found: ".format(len(annotations.web_entities)))
for entity in annotations.web_entities:
print(f"\n\tScore : {entity.score}")
print(f"\tDescription: {entity.description}")
if annotations.visually_similar_images:
print(
"\n{} visually similar images found:\n".format(
len(annotations.visually_similar_images)
)
)
for image in annotations.visually_similar_images:
print(f"\tImage url : {image.url}")
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
其他語言
C#: 請按照用戶端程式庫頁面上的C# 設定說明操作, 然後前往 .NET 適用的 Vision 參考說明文件。
PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明操作, 然後前往 PHP 適用的 Vision 參考文件。
Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision 參考說明文件。
使用遠端圖片偵測網路實體
您可以透過 Vision API,對位於 Cloud Storage 或網路上的遠端圖片檔案執行特徵偵測。如要傳送遠端檔案要求,請在要求內文中指定檔案的網頁網址或 Cloud Storage URI。
REST
使用任何要求資料之前,請先替換以下項目:
HTTP 方法和網址:
POST https://vision.googleapis.com/v1/images:annotate
JSON 要求主體:
{ "requests": [ { "image": { "source": { "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "maxResults": RESULTS_INT, "type": "WEB_DETECTION" }, ] } ] }
如要傳送要求,請選擇以下其中一個選項:
curl
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
如果要求成功,伺服器會傳回 200 OK
HTTP 狀態碼與 JSON 格式的回應。
回覆:
回應
{ "responses": [ { "webDetection": { "webEntities": [ { "entityId": "/m/02p7_j8", "score": 1.44225, "description": "Carnival in Rio de Janeiro" }, { "entityId": "/m/06gmr", "score": 1.2913725, "description": "Rio de Janeiro" }, { "entityId": "/m/04cx88", "score": 0.78465, "description": "Brazilian Carnival" }, { "entityId": "/m/09l9f", "score": 0.7166, "description": "Carnival" }, ... ], "fullMatchingImages": [ { "url": "https://1000lugaresparair.files.wordpress.com/2017/11/quinten-de-graaf-278848.jpg" }, ... ], "partialMatchingImages": [ { "url": "https://www.linnanneito.fi/wp-content/uploads/sambakarnevaali-riossa.jpg" }, ... ], "pagesWithMatchingImages": [ { "url": "https://www.intrepidtravel.com/us/brazil/rio-carnival-122873", "pageTitle": "\u003cb\u003eRio Carnival\u003c/b\u003e | Intrepid Travel US", "partialMatchingImages": [ { "url": "https://www.intrepidtravel.com/sites/intrepid/files/styles/large/public/elements/product/hero/GGSR-Brazil-rio-carnival-ladies.jpg" }, ... ], "visuallySimilarImages": [ { "url": "https://pbs.twimg.com/media/DVoQOx6WkAIpHKF.jpg" }, ... ], "bestGuessLabels": [ { "label": "rio carnival", "languageCode": "en" } ] } } ] }
Go
在試用這個範例之前,請先按照Go「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Go API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWebURI(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
image := vision.NewImageFromURI(file)
web, err := client.DetectWeb(ctx, image, nil)
if err != nil {
return err
}
fmt.Fprintln(w, "Web properties:")
if len(web.FullMatchingImages) != 0 {
fmt.Fprintln(w, "\tFull image matches:")
for _, full := range web.FullMatchingImages {
fmt.Fprintf(w, "\t\t%s\n", full.Url)
}
}
if len(web.PagesWithMatchingImages) != 0 {
fmt.Fprintln(w, "\tPages with this image:")
for _, page := range web.PagesWithMatchingImages {
fmt.Fprintf(w, "\t\t%s\n", page.Url)
}
}
if len(web.WebEntities) != 0 {
fmt.Fprintln(w, "\tEntities:")
fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
for _, entity := range web.WebEntities {
fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
}
}
if len(web.BestGuessLabels) != 0 {
fmt.Fprintln(w, "\tBest guess labels:")
for _, label := range web.BestGuessLabels {
fmt.Fprintf(w, "\t\t%s\n", label.Label)
}
}
return nil
}
Java
在試用這個範例之前,請先按照Java「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Java API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.WebDetection;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectWebDetectionsGcs {
public static void detectWebDetectionsGcs() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
detectWebDetectionsGcs(filePath);
}
// Detects whether the remote image on Google Cloud Storage has features you would want to
// moderate.
public static void detectWebDetectionsGcs(String gcsPath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.WEB_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// Search the web for usages of the image. You could use these signals later
// for user input moderation or linking external references.
// For a full list of available annotations, see http://g.co/cloud/vision/docs
WebDetection annotation = res.getWebDetection();
System.out.println("Entity:Id:Score");
System.out.println("===============");
for (WebDetection.WebEntity entity : annotation.getWebEntitiesList()) {
System.out.println(
entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
}
for (WebDetection.WebLabel label : annotation.getBestGuessLabelsList()) {
System.out.format("%nBest guess label: %s", label.getLabel());
}
System.out.println("%nPages with matching images: Score%n==");
for (WebDetection.WebPage page : annotation.getPagesWithMatchingImagesList()) {
System.out.println(page.getUrl() + " : " + page.getScore());
}
System.out.println("%nPages with partially matching images: Score%n==");
for (WebDetection.WebImage image : annotation.getPartialMatchingImagesList()) {
System.out.println(image.getUrl() + " : " + image.getScore());
}
System.out.println("%nPages with fully matching images: Score%n==");
for (WebDetection.WebImage image : annotation.getFullMatchingImagesList()) {
System.out.println(image.getUrl() + " : " + image.getScore());
}
System.out.println("%nPages with visually similar images: Score%n==");
for (WebDetection.WebImage image : annotation.getVisuallySimilarImagesList()) {
System.out.println(image.getUrl() + " : " + image.getScore());
}
}
}
}
}
Node.js
在試用這個範例之前,請先按照Node.js「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Node.js API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';
// Detect similar images on the web to a remote file
const [result] = await client.webDetection(`gs://${bucketName}/${fileName}`);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
console.log(
`Full matches found: ${webDetection.fullMatchingImages.length}`
);
webDetection.fullMatchingImages.forEach(image => {
console.log(` URL: ${image.url}`);
console.log(` Score: ${image.score}`);
});
}
if (webDetection.partialMatchingImages.length) {
console.log(
`Partial matches found: ${webDetection.partialMatchingImages.length}`
);
webDetection.partialMatchingImages.forEach(image => {
console.log(` URL: ${image.url}`);
console.log(` Score: ${image.score}`);
});
}
if (webDetection.webEntities.length) {
console.log(`Web entities found: ${webDetection.webEntities.length}`);
webDetection.webEntities.forEach(webEntity => {
console.log(` Description: ${webEntity.description}`);
console.log(` Score: ${webEntity.score}`);
});
}
if (webDetection.bestGuessLabels.length) {
console.log(
`Best guess labels found: ${webDetection.bestGuessLabels.length}`
);
webDetection.bestGuessLabels.forEach(label => {
console.log(` Label: ${label.label}`);
});
}
Python
在試用這個範例之前,請先按照Python「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Python API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
def detect_web_uri(uri):
"""Detects web annotations in the file located in Google Cloud Storage."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.Image()
image.source.image_uri = uri
response = client.web_detection(image=image)
annotations = response.web_detection
if annotations.best_guess_labels:
for label in annotations.best_guess_labels:
print(f"\nBest guess label: {label.label}")
if annotations.pages_with_matching_images:
print(
"\n{} Pages with matching images found:".format(
len(annotations.pages_with_matching_images)
)
)
for page in annotations.pages_with_matching_images:
print(f"\n\tPage url : {page.url}")
if page.full_matching_images:
print(
"\t{} Full Matches found: ".format(len(page.full_matching_images))
)
for image in page.full_matching_images:
print(f"\t\tImage url : {image.url}")
if page.partial_matching_images:
print(
"\t{} Partial Matches found: ".format(
len(page.partial_matching_images)
)
)
for image in page.partial_matching_images:
print(f"\t\tImage url : {image.url}")
if annotations.web_entities:
print("\n{} Web entities found: ".format(len(annotations.web_entities)))
for entity in annotations.web_entities:
print(f"\n\tScore : {entity.score}")
print(f"\tDescription: {entity.description}")
if annotations.visually_similar_images:
print(
"\n{} visually similar images found:\n".format(
len(annotations.visually_similar_images)
)
)
for image in annotations.visually_similar_images:
print(f"\tImage url : {image.url}")
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
gcloud
如要執行網頁偵測,請使用 gcloud ml vision detect-web
指令,如下列範例所示:
gcloud ml vision detect-web gs://cloud-samples-data/vision/web/carnaval.jpeg
其他語言
C#: 請按照用戶端程式庫頁面上的C# 設定說明操作, 然後前往 .NET 適用的 Vision 參考說明文件。
PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明操作, 然後前往 PHP 適用的 Vision 參考文件。
Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision 參考說明文件。
試試看
請試試下方的網路實體偵測功能。你可以使用已指定的圖片 (gs://cloud-samples-data/vision/web/carnaval.jpeg
),也可以改為指定自己的圖片。選取「Execute」,傳送要求。

要求主體:
{ "requests": [ { "features": [ { "type": "WEB_DETECTION" } ], "image": { "source": { "gcsImageUri": "gs://cloud-samples-data/vision/web/carnaval.jpeg" } } } ] }