Detectar pontos de referência

A detecção de pontos de referência encontra estruturas famosas, naturais e construídas pelo homem em uma imagem.

Imagem de Catedral de São Basílio
Crédito da imagem: Nikolay Vorobyev em Unsplash (anotações adicionadas) [links em inglês].

Solicitações de detecção de pontos de referência

Configurar o projeto e a autenticação do Google Cloud

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Vision API.

    Enable the API

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init

Detectar pontos de referência em uma imagem local

Use a API Vision para detectar atributos em um arquivo de imagem local.

Para solicitações REST, envie o conteúdo do arquivo de imagem como uma string codificada em base64 no corpo da sua solicitação.

Para solicitações gcloud e da biblioteca de cliente, especifique o caminho para uma imagem local na sua solicitação.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • BASE64_ENCODED_IMAGE: a representação base64 (string ASCII) dos dados da imagem binária. Essa string precisa ser semelhante à seguinte:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Veja mais informações no tópico Codificação base64.
  • RESULTS_INT: (opcional) um valor inteiro de resultados a serem retornados. Se você omitir o campo "maxResults" e o valor dele, a API retornará o valor padrão de 10 resultados. Esse campo não se aplica aos seguintes tipos de recursos: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION ou CROP_HINTS.
  • PROJECT_ID: o ID do Google Cloud projeto.

Método HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON da solicitação:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "LANDMARK_DETECTION"
        },
      ]
    }
  ]
}

Para enviar a solicitação, escolha uma destas opções:

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK e a resposta no formato JSON.

Resposta:

{
  "responses": [
    {
      "landmarkAnnotations": [
        {
          "mid": "/m/014lft",
          "description": "Saint Basil's Cathedral",
          "score": 0.7840959,
          "boundingPoly": {
            "vertices": [
              {
                "x": 812,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 3052
              },
              {
                "x": 812,
                "y": 3052
              }
            ]
          },
          "locations": [
            {
              "latLng": {
                "latitude": 55.752912,
                "longitude": 37.622315883636475
              }
            }
          ]
        }
      ]
    }
  ]
}

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// detectLandmarks gets landmarks from the Vision API for an image at the given file path.
func detectLandmarks(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectLandmarks(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No landmarks found.")
	} else {
		fmt.Fprintln(w, "Landmarks:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido da API Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.LocationInfo;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLandmarks {
  public static void detectLandmarks() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectLandmarks(filePath);
  }

  // Detects landmarks in the specified local image.
  public static void detectLandmarks(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();
    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LANDMARK_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLandmarkAnnotationsList()) {
          LocationInfo info = annotation.getLocationsList().listIterator().next();
          System.out.format("Landmark: %s%n %s%n", annotation.getDescription(), info.getLatLng());
        }
      }
    }
  }
}

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs landmark detection on the local file
const [result] = await client.landmarkDetection(fileName);
const landmarks = result.landmarkAnnotations;
console.log('Landmarks:');
landmarks.forEach(landmark => console.log(landmark));

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

def detect_landmarks(path):
    """Detects landmarks in the file."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.landmark_detection(image=image)
    landmarks = response.landmark_annotations
    print("Landmarks:")

    for landmark in landmarks:
        print(landmark.description)
        for location in landmark.locations:
            lat_lng = location.lat_lng
            print(f"Latitude {lat_lng.latitude}")
            print(f"Longitude {lat_lng.longitude}")

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

C#: Siga as Instruções de configuração do C# na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para .NET.

PHP: Siga as Instruções de configuração do PHP na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para PHP.

Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.

Detectar pontos de referência em uma imagem remota

É possível usar a API Vision para realizar a detecção de recursos em um arquivo de imagem remoto localizado no Cloud Storage ou na Web. Para enviar uma solicitação de arquivo remoto, especifique o URL da Web do arquivo ou o URI do Cloud Storage no corpo da solicitação.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • CLOUD_STORAGE_IMAGE_URI: o caminho para um arquivo de imagem válido em um bucket do Cloud Storage. Você precisa ter, pelo menos, privilégios de leitura para o arquivo. Exemplo:
    • gs://cloud-samples-data/vision/landmark/st_basils.jpeg
  • RESULTS_INT: (opcional) um valor inteiro de resultados a serem retornados. Se você omitir o campo "maxResults" e o valor dele, a API retornará o valor padrão de 10 resultados. Esse campo não se aplica aos seguintes tipos de recursos: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION ou CROP_HINTS.
  • PROJECT_ID: o ID do Google Cloud projeto.

Método HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON da solicitação:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "LANDMARK_DETECTION"
        },
      ]
    }
  ]
}

Para enviar a solicitação, escolha uma destas opções:

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK e a resposta no formato JSON.

Resposta:

{
  "responses": [
    {
      "landmarkAnnotations": [
        {
          "mid": "/m/014lft",
          "description": "Saint Basil's Cathedral",
          "score": 0.7840959,
          "boundingPoly": {
            "vertices": [
              {
                "x": 812,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 3052
              },
              {
                "x": 812,
                "y": 3052
              }
            ]
          },
          "locations": [
            {
              "latLng": {
                "latitude": 55.752912,
                "longitude": 37.622315883636475
              }
            }
          ]
        }
      ]
    }
  ]
}

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// detectLandmarks gets landmarks from the Vision API for an image at the given file path.
func detectLandmarksURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectLandmarks(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No landmarks found.")
	} else {
		fmt.Fprintln(w, "Landmarks:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionJava.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.LocationInfo;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLandmarksGcs {

  public static void detectLandmarksGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectLandmarksGcs(filePath);
  }

  // Detects landmarks in the specified remote image on Google Cloud Storage.
  public static void detectLandmarksGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LANDMARK_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLandmarkAnnotationsList()) {
          LocationInfo info = annotation.getLocationsList().listIterator().next();
          System.out.format("Landmark: %s%n %s%n", annotation.getDescription(), info.getLatLng());
        }
      }
    }
  }
}

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs landmark detection on the gcs file
const [result] = await client.landmarkDetection(
  `gs://${bucketName}/${fileName}`
);
const landmarks = result.landmarkAnnotations;
console.log('Landmarks:');
landmarks.forEach(landmark => console.log(landmark));

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

def detect_landmarks_uri(uri):
    """Detects landmarks in the file located in Google Cloud Storage or on the
    Web."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.landmark_detection(image=image)
    landmarks = response.landmark_annotations
    print("Landmarks:")

    for landmark in landmarks:
        print(landmark.description)

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

Para fazer a detecção de pontos de referência, use o comando gcloud ml vision detect-landmarks conforme mostrado no exemplo a seguir:

gcloud ml vision detect-landmarks gs://cloud-samples-data/vision/landmark/st_basils.jpeg

C#: Siga as Instruções de configuração do C# na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para .NET.

PHP: Siga as Instruções de configuração do PHP na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para PHP.

Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.

Teste agora

Teste a detecção de pontos de referência abaixo. É possível usar a imagem já especificada (gs://cloud-samples-data/vision/landmark/st_basils.jpeg) ou determinar sua própria imagem. Envie a solicitação selecionando Executar.

Imagem de Catedral de São Basílio
Crédito da imagem: Nikolay Vorobyev em Unsplash.

Corpo da solicitação:

{
  "requests": [
    {
      "features": [
        {
          "maxResults": 10,
          "type": "LANDMARK_DETECTION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "gs://cloud-samples-data/vision/landmark/st_basils.jpeg"
        }
      }
    }
  ]
}