Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
Dopo aver configurato l'ambiente, puoi creare l'app.
Nella console Google Cloud , un'app è rappresentata come un grafico.
Inoltre, in Vertex AI Vision, un grafico dell'app deve avere almeno due nodi: un nodo di origine video (stream) e almeno un altro nodo (un modello di elaborazione o una destinazione di output).
Crea un'app vuota
Prima di poter compilare il grafico dell'app, devi creare un'app vuota.
Console
Crea un'app nella Google Cloud console.
Apri la scheda Applicazioni della dashboard di Vertex AI Vision.
Inserisci quickstart-app come nome dell'app e scegli la tua regione.
Fai clic su Crea.
Aggiungi nodi dei componenti dell'app
Dopo aver creato l'applicazione vuota, puoi aggiungere i tre nodi
al grafico dell'app: il nodo di importazione che può ricevere dati di stream, il
nodo di elaborazione che esegue un'attività di computer vision sui dati e un nodo di destinazione
dei dati, una destinazione di archiviazione warehouse in questo esempio.
Console
Aggiungi nodi dei componenti all'app nella console.
Apri la scheda Applicazioni della dashboard di Vertex AI Vision.
Nella riga quickstart-app, seleziona
schemaVisualizza grafico. Viene visualizzata la visualizzazione del grafico della pipeline di elaborazione.
Aggiungere un nodo di importazione dati
Per aggiungere un nodo di flusso di input, seleziona l'opzione Flussi nella sezione Connettori del menu laterale.
Nella sezione Origine del menu Stream che si apre, seleziona
addAggiungi stream.
Nel menu Aggiungi flussi, scegli
radio_button_checkedRegistra nuovi
flussi e aggiungi quickstart-stream come nome del flusso.
Per aggiungere lo stream al grafico dell'app, fai clic su Aggiungi stream.
Aggiungere un nodo di elaborazione dei dati
Per aggiungere il nodo del modello di rilevamento di oggetti, seleziona l'opzione Rilevamento di oggetti
nella sezione Modelli preaddestrati del menu laterale.
Aggiungere un nodo di archiviazione dei dati
Per aggiungere il nodo di destinazione di output (spazio di archiviazione), seleziona l'opzione Media Warehouse di Vertex AI Vision nella sezione Connettori del menu laterale.
Nel menu Media Warehouse di Vertex AI Vision, fai clic su Connetti warehouse.
Nel menu Connetti warehouse, seleziona radio_button_checkedCrea nuovo warehouse. Assegna al warehouse il nome quickstart-warehouse e lascia
la durata TTL a 14 giorni.
Fai clic sul pulsante Crea per aggiungere il warehouse.
Esegui il deployment dell'app per utilizzarla
Dopo aver creato l'app end-to-end con tutti i componenti necessari, l'ultimo passaggio per utilizzarla è il deployment.
Console
Apri la scheda Applicazioni della dashboard di Vertex AI Vision.
Nella pagina del builder del grafico delle applicazioni, fai clic sul pulsante
play_arrowDeploy (Implementa).
Nella finestra di dialogo di conferma successiva, seleziona Esegui il deployment.
Il completamento dell'operazione di deployment potrebbe richiedere diversi minuti. Al termine del deployment, accanto ai nodi vengono visualizzati segni di spunta verdi.
Complimenti! Hai appena creato e implementato la tua prima app Vertex AI Vision. La creazione e l'implementazione di un'app sono i primi passaggi per l'importazione e l'utilizzo dei dati multimediali elaborati con Vertex AI Vision.
Esegui la pulizia
Per evitare che al tuo account Google Cloud vengano addebitati costi relativi alle risorse utilizzate in questa guida rapida, elimina il progetto che contiene le risorse oppure mantieni il progetto ed elimina le singole risorse.
Elimina il progetto
In the Google Cloud console, go to the Manage resources page.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[],[],null,["# Quickstart: Build an app in the console\n\nBuild an app in the console\n===========================\n\nLearn how to create a simple Vertex AI Vision object detector app in the\nGoogle Cloud console.\n\n*** ** * ** ***\n\nTo follow step-by-step guidance for this task directly in the\nGoogle Cloud console, click **Guide me**:\n\n[Guide me](https://console.cloud.google.com/freetrial?redirectPath=/?walkthrough_id=vertex-ai-vision--build-app-console-quickstart)\n\n*** ** * ** ***\n\nBefore you begin\n----------------\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Vision AI API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=visionai.googleapis.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Vision AI API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=visionai.googleapis.com)\n\nCreate an object detector application\n-------------------------------------\n\nAfter you have set up your environment, you can create your app.\n\nIn the Google Cloud console, an app is represented as a graph.\nAdditionally, in Vertex AI Vision, an app graph must have at least two nodes: a\nvideo source node (stream), and *at least* one more node (a processing model or\noutput destination).\n\n### Create an empty app\n\nBefore you can populate the app graph, you must first create an empty app. \n\n### Console\n\nCreate an app in the Google Cloud console.\n\n1. Open the **Applications** tab of the Vertex AI Vision dashboard.\n\n [Go to the Applications tab](https://console.cloud.google.com/ai/vision-ai/applications)\n2. Click the add**Create** button.\n\n3. Enter `quickstart-app` as the app name and choose your region.\n\n4. Click **Create**.\n\n \u003cbr /\u003e\n\n### Add app component nodes\n\nAfter you have created the empty application, you can then add the three nodes\nto the app graph: the **ingestion node** that can receive stream data, the\n**processing node** that performs a computer image task on data, and a **data\ndestination node**, a warehouse storage destination in this example. \n\n### Console\n\nAdd component nodes to your app in the console.\n\n1. Open the **Applications** tab of the Vertex AI Vision dashboard.\n\n [Go to the Applications tab](https://console.cloud.google.com/ai/vision-ai/applications)\n2. In the `quickstart-app` line, select\n schema**View graph**. This takes you\n to the graph visualization of the processing pipeline.\n\n**Add a data ingestion node**\n\n1. To add an input stream node, select the **Streams** option in the\n **Connectors** section of the side menu.\n\n2. In the **Source** section of the **Stream** menu that opens, select\n add**Add streams**.\n\n3. In the **Add streams** menu, choose\n radio_button_checked**Register new\n streams** and add `quickstart-stream` as the stream name.\n\n \u003cbr /\u003e\n\n4. To add the stream to the app graph, click **Add streams**.\n\n**Add a data processing node**\n\n1. To add the object detector model node, select the **Object detector**\n option in the **Pre-trained models** section of the side menu.\n\n**Add a data storage node**\n\n1. To add the output destination (storage) node, select the\n **Vertex AI Vision's Media Warehouse** option in the **Connectors** section of the side\n menu.\n\n2. In the **Vertex AI Vision's Media Warehouse** menu, click **Connect warehouse**.\n\n3. In the **Connect warehouse** menu, select\n radio_button_checked**Create new\n warehouse** . Name the warehouse `quickstart-warehouse`, and leave\n the TTL duration at 14 days.\n\n4. Click the **Create** button to add the warehouse.\n\nDeploy your app for use\n-----------------------\n\nAfter you have built your end-to-end app with all the necessary components, the last step to using the app is to deploy it.\n\n\u003cbr /\u003e\n\n### Console\n\n1. Open the **Applications** tab of the Vertex AI Vision dashboard.\n\n [Go to the Applications tab](https://console.cloud.google.com/ai/vision-ai/applications)\n2. Select **View graph** next to the `quickstart-app` app in the list.\n\n3. From the application graph builder page, click the\n play_arrow**Deploy** button.\n\n4. In the following confirmation dialog, select **Deploy**.\n\n The deploy operation might take several minutes to complete. After\n deployment finishes, green check marks appear next to the nodes.\n\n\nCongratulations! You've just created and deployed your first Vertex AI Vision\napp. Creating and deploying an app are the first steps in ingesting and using\nprocessed media data with Vertex AI Vision.\n\nClean up\n--------\n\nTo avoid incurring charges to your Google Cloud account for the resources used\nin this quickstart, either delete the project that contains the resources, or\nkeep the project and delete the individual resources. \n\n### Delete the project\n\n| **Caution** : Deleting a project has the following effects:\n|\n| - **Everything in the project is deleted.** If you used an existing project for the tasks in this document, when you delete it, you also delete any other work you've done in the project.\n| - **Custom project IDs are lost.** When you created this project, you might have created a custom project ID that you want to use in the future. To preserve the URLs that use the project ID, such as an `appspot.com` URL, delete selected resources inside the project instead of deleting the whole project.\n|\n|\n| If you plan to explore multiple architectures, tutorials, or quickstarts, reusing projects\n| can help you avoid exceeding project quota limits.\n1. In the Google Cloud console, go to the **Manage resources** page.\n\n [Go to Manage resources](https://console.cloud.google.com/iam-admin/projects)\n2. In the project list, select the project that you want to delete, and then click **Delete**.\n3. In the dialog, type the project ID, and then click **Shut down** to delete the project. \n\n### Delete individual resources\n\n#### Delete a warehouse\n\n1. In the Google Cloud console, go to the **Warehouses** page.\n\n [Go to the Warehouses tab](https://console.cloud.google.com/ai/vision-ai/media-warehouse)\n2. Locate your `quickstart-warehouse` warehouse.\n3. To delete the warehouse, click more_vert **Actions** , click **Delete warehouse**, and then follow the instructions.\n\n#### Delete a stream\n\n1. In the Google Cloud console, go to the **Streams** page.\n\n [Go to the Streams tab](https://console.cloud.google.com/ai/vision-ai/video-streams)\n2. Locate your `quickstart-stream` stream.\n3. To delete the stream, click more_vert **Actions** , click **Delete stream**, and then follow the instructions.\n\n#### Delete an app\n\n1. In the Google Cloud console, go to the **Applications** page.\n\n [Go to the Applications tab](https://console.cloud.google.com/ai/vision-ai/applications)\n | **Note:** You must first undeploy your app before you can delete it.\n2. Locate your `quickstart-app` app.\n3. To delete the app, click more_vert **Actions** , click **Delete application**, and then follow the instructions.\n\nWhat's next\n-----------\n\n- Read [Set up a project and a development environment](/vision-ai/docs/cloud-environment) before you use the command line tools.\n- Learn how to [ingest data](/vision-ai/docs/create-manage-streams#ingest-videos) into your new app and read about other components you can add in [Build an app](/vision-ai/docs/build-app).\n- Learn about other output storage and processing options in [Connect app output to a data destination](/vision-ai/docs/connect-data-destination).\n- Read about how to [Search Warehouse data in the console](/vision-ai/docs/search-streaming-warehouse).\n- Read more about [Responsible AI practices](https://ai.google/responsibilities/responsible-ai-practices/)."]]