不適切コンテンツ

は、

不適切コンテンツの検出により動画内のアダルト コンテンツが検出されます。通常、アダルト コンテンツとは 18 歳以上を対象としたもので、ヌードや性的描写、ポルノ(漫画やアニメを含む)などを指します(ただし、これらに限定されません)。

次のサンプルコードは、ストリーミング クライアント ライブラリを使用して不適切コンテンツの存在を検出する方法を示しています。

Java

import com.google.api.gax.rpc.BidiStream;
import com.google.cloud.videointelligence.v1p3beta1.ExplicitContentFrame;
import com.google.cloud.videointelligence.v1p3beta1.StreamingAnnotateVideoRequest;
import com.google.cloud.videointelligence.v1p3beta1.StreamingAnnotateVideoResponse;
import com.google.cloud.videointelligence.v1p3beta1.StreamingFeature;
import com.google.cloud.videointelligence.v1p3beta1.StreamingLabelDetectionConfig;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoAnnotationResults;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoConfig;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoIntelligenceServiceClient;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;

class StreamingExplicitContentDetection {

  // Perform streaming video detection for explicit content
  static void streamingExplicitContentDetection(String filePath) {
    // String filePath = "path_to_your_video_file";

    try (StreamingVideoIntelligenceServiceClient client =
        StreamingVideoIntelligenceServiceClient.create()) {

      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      // Set the chunk size to 5MB (recommended less than 10MB).
      int chunkSize = 5 * 1024 * 1024;
      int numChunks = (int) Math.ceil((double) data.length / chunkSize);

      StreamingLabelDetectionConfig labelConfig = StreamingLabelDetectionConfig.newBuilder()
          .setStationaryCamera(false)
          .build();

      StreamingVideoConfig streamingVideoConfig = StreamingVideoConfig.newBuilder()
          .setFeature(StreamingFeature.STREAMING_EXPLICIT_CONTENT_DETECTION)
          .setLabelDetectionConfig(labelConfig)
          .build();

      BidiStream<StreamingAnnotateVideoRequest, StreamingAnnotateVideoResponse> call =
          client.streamingAnnotateVideoCallable().call();

      // The first request must **only** contain the audio configuration:
      call.send(
          StreamingAnnotateVideoRequest.newBuilder()
              .setVideoConfig(streamingVideoConfig)
              .build());

      // Subsequent requests must **only** contain the audio data.
      // Send the requests in chunks
      for (int i = 0; i < numChunks; i++) {
        call.send(
            StreamingAnnotateVideoRequest.newBuilder()
                .setInputContent(ByteString.copyFrom(
                    Arrays.copyOfRange(data, i * chunkSize, i * chunkSize + chunkSize)))
                .build());
      }

      // Tell the service you are done sending data
      call.closeSend();

      for (StreamingAnnotateVideoResponse response : call) {
        StreamingVideoAnnotationResults annotationResults = response.getAnnotationResults();

        for (ExplicitContentFrame frame :
            annotationResults.getExplicitAnnotation().getFramesList()) {

          double offset = frame.getTimeOffset().getSeconds()
              + frame.getTimeOffset().getNanos() / 1e9;

          System.out.format("Offset: %f\n", offset);
          System.out.format("\tPornography: %s", frame.getPornographyLikelihood());
        }
      }
    } catch (IOException e) {
      e.printStackTrace();
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';
const {
  StreamingVideoIntelligenceServiceClient,
} = require('@google-cloud/video-intelligence').v1p3beta1;
const fs = require('fs');

// Instantiates a client
const client = new StreamingVideoIntelligenceServiceClient();
// Streaming configuration
const configRequest = {
  videoConfig: {
    feature: 'STREAMING_EXPLICIT_CONTENT_DETECTION',
  },
};

const readStream = fs.createReadStream(path, {
  highWaterMark: 5 * 1024 * 1024, //chunk size set to 5MB (recommended less than 10MB)
  encoding: 'base64',
});
//Load file content
const chunks = [];
readStream
  .on('data', chunk => {
    const request = {
      inputContent: chunk.toString(),
    };
    chunks.push(request);
  })
  .on('close', function() {
    // configRequest should be the first in the stream of requests
    stream.write(configRequest);
    for (let i = 0; i < chunks.length; i++) {
      stream.write(chunks[i]);
    }
    stream.end();
  });

const stream = client.streamingAnnotateVideo().on('data', response => {
  //Gets annotations for video
  const annotations = response.annotationResults;
  const explicitContentResults = annotations.explicitAnnotation.frames;
  explicitContentResults.forEach(result => {
    console.log(
      `Time: ${result.timeOffset.seconds || 0}` +
        `.${(result.timeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(` Pornography likelihood: ${result.pornographyLikelihood}`);
  });
});

Python

from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

# Set streaming config.
config = videointelligence.types.StreamingVideoConfig(
    feature=(videointelligence.enums.StreamingFeature.
             STREAMING_EXPLICIT_CONTENT_DETECTION))

# config_request should be the first in the stream of requests.
config_request = videointelligence.types.StreamingAnnotateVideoRequest(
    video_config=config)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
stream = []
with io.open(path, 'rb') as video_file:
    while True:
        data = video_file.read(chunk_size)
        if not data:
            break
        stream.append(data)

def stream_generator():
    yield config_request
    for chunk in stream:
        yield videointelligence.types.StreamingAnnotateVideoRequest(
            input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
responses = client.streaming_annotate_video(requests)

# Each response corresponds to about 1 second of video.
for response in responses:
    # Check for errors.
    if response.error.message:
        print(response.error.message)
        break

    for frame in response.annotation_results.explicit_annotation.frames:
        time_offset = (frame.time_offset.seconds +
                       frame.time_offset.nanos / 1e9)
        pornography_likelihood = videointelligence.enums.Likelihood(
            frame.pornography_likelihood)

        print('Time: {}s'.format(time_offset))
        print('\tpornogaphy: {}'.format(pornography_likelihood.name))

このページは役立ちましたか?評価をお願いいたします。

フィードバックを送信...

Cloud Video Intelligence API ドキュメント