Diese Seite wurde von der Cloud Translation API übersetzt.
Switch to English

Personen erkennen

Im folgenden Codebeispiel wird gezeigt, wie mithilfe der Video Intelligence API Personen in einer Videodatei erkannt werden.

Mit Video Intelligence können Sie das Vorhandensein eines Menschen in einer Videodatei erkennen und einzelne Personen in einem Video oder Videosegment verfolgen.

Personenerkennung anhand einer Datei in Cloud Storage

Im Folgenden wird gezeigt, wie Sie mit der Funktion zur Personenerkennung eine Annotationsanfrage an Video Intelligence senden.

REST & CMD LINE

Anfrage zur Annotation eines Videos senden

Im Folgenden wird gezeigt, wie eine POST-Anfrage an die Methode videos:annotate gesendet wird. In diesem Beispiel wird das Zugriffstoken für ein Dienstkonto verwendet, das mit dem Cloud SDK eingerichtet wurde. Anleitungen zur Installation des Cloud SDK, zur Einrichtung eines Projekts mit einem Dienstkonto und zur Anforderung eines Zugriffstokens finden Sie in der Kurzanleitung zur Video Intelligence API. Siehe auch PersonDetectionConfig.

Geben Sie für die Parameter folgende Werte an:

  • inputUri: Ein Cloud Storage-Bucket, der die Datei enthält, die Sie annotieren möchten, einschließlich des Dateinamens. Muss mit gs:// beginnen.
    Beispiel:
    "inputUri": "gs://cloud-samples-data/video/googlework_short.mp4"

HTTP-Methode und URL:

POST https://videointelligence.googleapis.com/v1p3beta1/videos:annotate

JSON-Text anfordern:

{
  "inputUri": "input-uri",
  "features": ["PERSON_DETECTION"],
  "videoContext": {
    "personDetectionConfig": {
      "includeBoundingBoxes": true,
      "includePoseLandmarks": true,
      "includeAttributes": true
     }
  }
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten in etwa folgende JSON-Antwort erhalten:

Wenn die Antwort erfolgreich ist, gibt die Video Intelligence API den name für Ihren Vorgang zurück. Oben wird ein Beispiel für eine solche Antwort gezeigt, wobei:

  • project-number: Die Nummer Ihres Projekts
  • location-id: Die Cloud-Region, in der die Annotation stattfinden soll. Unterstützte Cloud-Regionen sind: us-east1, us-west1, europe-west1, asia-east1. Wenn keine Region angegeben ist, wird eine Region basierend auf dem Speicherort der Videodatei festgelegt.
  • operation-id: Die ID des lang andauernden Vorgangs, der für die Anfrage erstellt und in der Antwort beim Start des Vorgangs angegeben wurde, z. B. 12345...

Ruft Annotationsergebnisse ab

Um das Ergebnis des Vorgangs abzurufen, führen Sie eine GET-Anfrage mithilfe des Vorgangsaufrufs, der vom Aufruf an Videos:Annotieren zurückgegeben wurde, wie im folgenden Beispiel gezeigt.

Geben Sie für die Parameter folgende Werte an:

  • operation-name: Der von der Video Intelligence API zurückgegebene Name des Vorgangs. Der Vorgangsname hat das Format projects/project-number/locations/location-id/operations/operation-id.

HTTP-Methode und URL:

GET https://videointelligence.googleapis.com/v1/operation-name

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten in etwa folgende JSON-Antwort erhalten:

Shot-Detect-Annotationen werden als shotAnnotations-Liste zurückgegeben. Hinweis: Das Feld done wird nur zurückgegeben, wenn sein Wert True ist. Es ist nicht in Antworten enthalten, für die der Vorgang nicht abgeschlossen wurde.

Anmerkungsergebnisse herunterladen

Kopieren Sie die Annotation aus der Quelle in den Ziel-Bucket (siehe Dateien und Objekte kopieren).

gsutil cp gcs_uri gs://my-bucket

Hinweis: Wenn der Nutzer die Ausgabe gcs uri erhält, wird die Annotation in diesem gcs uri gespeichert.

Java


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.DetectedLandmark;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.PersonDetectionAnnotation;
import com.google.cloud.videointelligence.v1.PersonDetectionConfig;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;

public class DetectPersonGcs {

  public static void detectPersonGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://cloud-samples-data/video/googlework_short.mp4";
    detectPersonGcs(gcsUri);
  }

  // Detects people in a video stored in Google Cloud Storage using
  // the Cloud Video Intelligence API.
  public static void detectPersonGcs(String gcsUri) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.

      PersonDetectionConfig personDetectionConfig =
          PersonDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get poses and attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludePoseLandmarks(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setPersonDetectionConfig(personDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.PERSON_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects people in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();
      // Get the first response, since we sent only one video.
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (PersonDetectionAnnotation personDetectionAnnotation :
          annotationResult.getPersonDetectionAnnotationsList()) {
        System.out.print("Person detected:\n");
        for (Track track : personDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that include characteristic--e.g. clothes,
          // posture of the person detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          // Attributes include unique pieces of clothing, poses (i.e., body landmarks)
          // of the person detected.
          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            System.out.printf(
                "\tAttribute: %s; Value: %s\n", attribute.getName(), attribute.getValue());
          }

          // Landmarks in person detection include body parts.
          for (DetectedLandmark attribute : firstTimestampedObject.getLandmarksList()) {
            System.out.printf(
                "\tLandmark: %s; Vertex: %f, %f\n",
                attribute.getName(), attribute.getPoint().getX(), attribute.getPoint().getY());
          }
        }
      }
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

async function detectPersonGCS() {
  const request = {
    inputUri: gcsUri,
    features: ['PERSON_DETECTION'],
    videoContext: {
      personDetectionConfig: {
        // Must set includeBoundingBoxes to true to get poses and attributes.
        includeBoundingBoxes: true,
        includePoseLandmarks: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const personAnnotations =
    results[0].annotationResults[0].personDetectionAnnotations;

  for (const {tracks} of personAnnotations) {
    console.log('Person detected:');

    for (const {segment, timestampedObjects} of tracks) {
      if (segment.startTimeOffset.seconds === undefined) {
        segment.startTimeOffset.seconds = 0;
      }
      if (segment.startTimeOffset.nanos === undefined) {
        segment.startTimeOffset.nanos = 0;
      }
      if (segment.endTimeOffset.seconds === undefined) {
        segment.endTimeOffset.seconds = 0;
      }
      if (segment.endTimeOffset.nanos === undefined) {
        segment.endTimeOffset.nanos = 0;
      }
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristic--e.g. clothes, posture
      // of the person detected.
      const [firstTimestampedObject] = timestampedObjects;

      // Attributes include unique pieces of clothing, poses (i.e., body
      // landmarks) of the person detected.
      for (const {name, value} of firstTimestampedObject.attributes) {
        console.log(`\tAttribute: ${name}; Value: ${value}`);
      }

      // Landmarks in person detection include body parts.
      for (const {name, point} of firstTimestampedObject.landmarks) {
        console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
      }
    }
  }
}

detectPersonGCS();

Python

from google.cloud import videointelligence_v1 as videointelligence

def detect_person(gcs_uri="gs://YOUR_BUCKET_ID/path/to/your/video.mp4"):
    """Detects people in a video."""

    client = videointelligence.VideoIntelligenceServiceClient()

    # Configure the request
    config = videointelligence.types.PersonDetectionConfig(
        include_bounding_boxes=True,
        include_attributes=True,
        include_pose_landmarks=True,
    )
    context = videointelligence.types.VideoContext(person_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.PERSON_DETECTION],
            "input_uri": gcs_uri,
            "video_context": context,
        }
    )

    print("\nProcessing video for person detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.person_detection_annotations:
        print("Person detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped objects that include
            # characteristics - -e.g.clothes, posture of the person detected.
            # Grab the first timestamped object
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include unique pieces of clothing,
            # poses, or hair color.
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

            # Landmarks in person detection include body parts such as
            # left_shoulder, right_ear, and right_ankle
            print("Landmarks:")
            for landmark in timestamped_object.landmarks:
                print(
                    "\t{}: {} (x={}, y={})".format(
                        landmark.name,
                        landmark.confidence,
                        landmark.point.x,  # Normalized vertex
                        landmark.point.y,  # Normalized vertex
                    )
                )

Personenerkennung aus einer lokalen Datei

Im folgenden Beispiel wird die Personenerkennung verwendet, um Entitäten in einem Video aus einer Videodatei zu finden, die von Ihrem lokalen Computer hochgeladen wurde.

REST & CMD LINE

Prozessanfrage senden

Codieren Sie den Inhalt der Videodatei als Base64-Codierung, um eine Personenerkennung für eine lokale Videodatei durchzuführen. Informationen zum Base64-Codieren des Inhalts einer Videodatei finden Sie unter Base64-Codierung. Stellen Sie dann eine POST-Anfrage an die Methode videos:annotate. Fügen Sie den Base64-codierten Inhalt in das Feld inputContent der Anfrage ein und geben Sie das Feature PERSON_DETECTION an.

Das folgende Beispiel zeigt eine POST-Anfrage mit curl. In diesem Beispiel wird das Zugriffstoken für ein Dienstkonto verwendet, das mit dem Cloud SDK eingerichtet wurde. Anleitungen zur Installation des Cloud SDK, zur Einrichtung eines Projekts mit einem Dienstkonto und zur Anforderung eines Zugriffstokens finden Sie in der Kurzanleitung zur Video Intelligence API.

Geben Sie für die Parameter folgende Werte an:

  • inputContent: Lokale Videodatei im Binärformat
    Beispiel: "AAAAGGZ0eXBtcDQyAAAAAAGzb21tcDQyAAGVGV1vb3YAAABsbXXoZAAAAADWvhlR1r4ZQAQABX5ABCOxo AAAEAAAAAAAA4..."

HTTP-Methode und URL:

POST https://videointelligence.googleapis.com/v1p3beta1/videos:annotate

JSON-Text anfordern:

{
  "inputContent": "Local video file in binary format",
  "features": ["PERSON_DETECTION"],
  "videoContext": {
    "personDetectionConfig": {
      "includeBoundingBoxes": true,
      "includePoseLandmarks": true,
      "includeAttributes": true
     }
  }
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten in etwa folgende JSON-Antwort erhalten:

Wenn die Anfrage erfolgreich ist, startet Video Intelligence das name für Ihren Vorgang. Das Beispiel oben zeigt eine solche Antwort, wobei project-number die Nummer Ihres Projekts und operation-id die ID des lang andauernden Vorgangs ist, der für die Anfrage erstellt wurde.

{ "name": "us-west1.17122464255125931980" }

Ergebnisse abrufen

Um das Ergebnis des Vorgangs abzurufen, senden Sie eine GET-Anfrage an den Endpunkt operations und geben Sie den Namen des Vorgangs an.

Geben Sie für die Parameter folgende Werte an:

  • operation-name: Der von der Video Intelligence API zurückgegebene Name des Vorgangs. Der Vorgangsname hat das Format projects/project-number/locations/location-id/operations/operation-id.

HTTP-Methode und URL:

GET https://videointelligence.googleapis.com/v1/operation-name

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie sollten in etwa folgende JSON-Antwort erhalten:

Java


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.DetectedLandmark;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.PersonDetectionAnnotation;
import com.google.cloud.videointelligence.v1.PersonDetectionConfig;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DetectPerson {

  public static void detectPerson() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "resources/googlework_short.mp4";
    detectPerson(localFilePath);
  }

  // Detects people in a video stored in a local file using the Cloud Video Intelligence API.
  public static void detectPerson(String localFilePath) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.
      Path path = Paths.get(localFilePath);
      byte[] data = Files.readAllBytes(path);
      ByteString inputContent = ByteString.copyFrom(data);

      PersonDetectionConfig personDetectionConfig =
          PersonDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get poses and attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludePoseLandmarks(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setPersonDetectionConfig(personDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(inputContent)
              .addFeatures(Feature.PERSON_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects people in a video
      // We get the first result because only one video is processed.
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (PersonDetectionAnnotation personDetectionAnnotation :
          annotationResult.getPersonDetectionAnnotationsList()) {
        System.out.print("Person detected:\n");
        for (Track track : personDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that include characteristic--e.g. clothes,
          // posture of the person detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          // Attributes include unique pieces of clothing, poses (i.e., body landmarks)
          // of the person detected.
          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            System.out.printf(
                "\tAttribute: %s; Value: %s\n", attribute.getName(), attribute.getValue());
          }

          // Landmarks in person detection include body parts.
          for (DetectedLandmark attribute : firstTimestampedObject.getLandmarksList()) {
            System.out.printf(
                "\tLandmark: %s; Vertex: %f, %f\n",
                attribute.getName(), attribute.getPoint().getX(), attribute.getPoint().getY());
          }
        }
      }
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;
const fs = require('fs');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

async function detectPerson() {
  const request = {
    inputContent: inputContent,
    features: ['PERSON_DETECTION'],
    videoContext: {
      personDetectionConfig: {
        // Must set includeBoundingBoxes to true to get poses and attributes.
        includeBoundingBoxes: true,
        includePoseLandmarks: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const personAnnotations =
    results[0].annotationResults[0].personDetectionAnnotations;

  for (const {tracks} of personAnnotations) {
    console.log('Person detected:');

    for (const {segment, timestampedObjects} of tracks) {
      if (segment.startTimeOffset.seconds === undefined) {
        segment.startTimeOffset.seconds = 0;
      }
      if (segment.startTimeOffset.nanos === undefined) {
        segment.startTimeOffset.nanos = 0;
      }
      if (segment.endTimeOffset.seconds === undefined) {
        segment.endTimeOffset.seconds = 0;
      }
      if (segment.endTimeOffset.nanos === undefined) {
        segment.endTimeOffset.nanos = 0;
      }
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristic--e.g. clothes, posture
      // of the person detected.
      const [firstTimestampedObject] = timestampedObjects;

      // Attributes include unique pieces of clothing, poses (i.e., body
      // landmarks) of the person detected.
      for (const {name, value} of firstTimestampedObject.attributes) {
        console.log(`\tAttribute: ${name}; Value: ${value}`);
      }

      // Landmarks in person detection include body parts.
      for (const {name, point} of firstTimestampedObject.landmarks) {
        console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
      }
    }
  }
}

detectPerson();

Python

import io

from google.cloud import videointelligence_v1 as videointelligence

def detect_person(local_file_path="path/to/your/video-file.mp4"):
    """Detects people in a video from a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()

    # Configure the request
    config = videointelligence.types.PersonDetectionConfig(
        include_bounding_boxes=True,
        include_attributes=True,
        include_pose_landmarks=True,
    )
    context = videointelligence.types.VideoContext(person_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.PERSON_DETECTION],
            "input_content": input_content,
            "video_context": context,
        }
    )

    print("\nProcessing video for person detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.person_detection_annotations:
        print("Person detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped objects that include
            # characteristic - -e.g.clothes, posture of the person detected.
            # Grab the first timestamped object
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include unique pieces of clothing,
            # poses, or hair color.
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

            # Landmarks in person detection include body parts such as
            # left_shoulder, right_ear, and right_ankle
            print("Landmarks:")
            for landmark in timestamped_object.landmarks:
                print(
                    "\t{}: {} (x={}, y={})".format(
                        landmark.name,
                        landmark.confidence,
                        landmark.point.x,  # Normalized vertex
                        landmark.point.y,  # Normalized vertex
                    )
                )