Ajouter un libellé aux vidéos via la ligne de commande
Ce guide de démarrage rapide vous présente les processus suivants :
- Copie d'un ensemble de vidéos dans Cloud Storage
- Création de fichiers CSV répertoriant les vidéos et leurs libellés
- Utilisation d'AutoML Video pour créer un ensemble de données, entraîner et utiliser un modèle
Avant de commencer
Configurer votre projet
- Connectez-vous à votre compte Google Cloud. Si vous débutez sur Google Cloud, créez un compte pour évaluer les performances de nos produits en conditions réelles. Les nouveaux clients bénéficient également de 300 $ de crédits gratuits pour exécuter, tester et déployer des charges de travail.
- Installez Google Cloud CLI.
-
Pour initialiser gcloudCLI, exécutez la commande suivante :
gcloud init
-
Créer ou sélectionner un projet Google Cloud
-
Créez un projet Google Cloud :
gcloud projects create PROJECT_ID
-
Sélectionnez le projet Google Cloud que vous avez créé :
gcloud config set project PROJECT_ID
-
-
Vérifiez que la facturation est activée pour votre projet Google Cloud.
-
Activer les API AutoML and Cloud Storage :
gcloud services enable storage-component.googleapis.com
automl.googleapis.com storage-api.googleapis.com - Installez Google Cloud CLI.
-
Pour initialiser gcloudCLI, exécutez la commande suivante :
gcloud init
-
Créer ou sélectionner un projet Google Cloud
-
Créez un projet Google Cloud :
gcloud projects create PROJECT_ID
-
Sélectionnez le projet Google Cloud que vous avez créé :
gcloud config set project PROJECT_ID
-
-
Vérifiez que la facturation est activée pour votre projet Google Cloud.
-
Activer les API AutoML and Cloud Storage :
gcloud services enable storage-component.googleapis.com
automl.googleapis.com storage-api.googleapis.com - Définissez la variable d'environnement
PROJECT_ID
sur votre ID de projet.export PROJECT_ID=PROJECT_ID
Les noms de ressources et les appels d'API AutoML incluent votre ID de projet. La variable d’environnementPROJECT_ID
constitue un moyen pratique de spécifier l’ID.
Créer un ensemble de données et importer des données d'entraînement
Créer un ensemble de données
Nommez votre ensemble de données, puis exécutez les commandes PowerShell ou curl
suivantes pour créer un ensemble de données portant ce nom.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- dataset-name : nom de l'ensemble de données à afficher dans l'interface
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
POST https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets
Corps JSON de la requête :
{ "displayName": "dataset-name", "videoClassificationDatasetMetadata": { } }
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
" https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets"
PowerShell
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri " https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets" | Select-Object -Expand Content
name
pour votre opération. Voici un exemple de ce type de réponse, où project-number
est le numéro de votre projet et operation-id
est l'ID de l'opération de longue durée créée pour la requête.
Importer des données d'entraînement
REST
Pour importer vos données d'entraînement, utilisez la méthodeimportData
. Cette méthode nécessite de fournir deux paramètres :
- Le chemin d'accès au fichier CSV contenant les chemins d'accès à l'entraînement.
- Les fichiers CSV de données de test. Remarque : ces fichiers sont disponibles dans le bucket "automl-video-demo-data" sur Cloud Storage.
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- input-uri : bucket Cloud Storage contenant le fichier que vous souhaitez annoter, y compris son nom. Doit commencer par gs://. Par exemple :
"inputUris": ["gs://automl-video-demo-data/hmdb_split1.csv"]
- dataset-id : remplacez cette valeur par l'identifiant par votre ensemble de données, et non par le nom à afficher. Par exemple :
VCN4798585402963263488
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
POST https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets/dataset-id:importData
Corps JSON de la requête :
{ "inputConfig": { "gcsSource": { "inputUris": input-uri } } }
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
" https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets/dataset-id:importData"
PowerShell
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri " https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets/dataset-id:importData" | Select-Object -Expand Content
VCN7506374678919774208
.
Obtenir l'état de l'opération d'importation
Vous pouvez interroger l'état de votre opération d'importation de données à l'aide des commandes curl
ou PowerShell suivantes.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- operation-id : remplacez cette valeur par l'ID de l'opération d'importation de données.
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
GET https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
exécutez la commande suivante :
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id"
PowerShell
exécutez la commande suivante :
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id" | Select-Object -Expand Content
done: true
dans l'état de l'opération, sans aucune erreur répertoriée, comme illustré dans l'exemple ci-dessous.
Répertorier tous les ensembles de données
Utilisez les commandes curl
ou PowerShell suivantes pour obtenir la liste de vos ensembles de données et le nombre d'échantillons vidéo qui y ont été importés.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région est déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets
Pour envoyer votre requête, développez l'une des options suivantes :
Vous devriez recevoir une réponse JSON de ce type :
Entraîner le modèle
Lancer l'opération d'entraînement d'un modèle
Après avoir créé votre ensemble de données et y avoir importé vos données d'entraînement, vous pouvez entraîner votre modèle.
Entraînez votre modèle à l'aide des commandes curl
ou PowerShell suivantes.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- dataset-id : l'ID correspond au dernier élément du nom de l'ensemble de données.
Par exemple, si le nom de votre ensemble de données est
projects/434039606874/locations/us-central1/datasets/VCN3104518874390609379
, son ID estVCN3104518874390609379
. - Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
POST https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models
Corps JSON de la requête :
{ "displayName": "test_model", "dataset_id": "dataset-id", "videoClassificationModelMetadata": {} }
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models"
PowerShell
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models" | Select-Object -Expand Content
{ "name": "projects/project-number/locations/location-id/operations/operation-id", "metadata": { "@type": "type.googleapis.com/google.cloud.automl.v1beta1.OperationMetadata", "progressPercentage": 100, "createTime": "2020-02-27T01:56:28.395640Z", "updateTime": "2020-02-27T02:04:12.336070Z" }, "done": true, "response": { "@type": "type.googleapis.com/google.cloud.automl.v1beta1.Model", "name": "projects/project-number/locations/location-id/models/operation-id", "createTime": "2020-02-27T02:00:22.329970Z", "videoClassificationModelMetadata": { "trainBudget": "1", "trainCost": "1", "stopReason": "BUDGET_REACHED" }, "displayName": "a_98487760535e48319dd204e6394670" } }
Obtenir l'état de l'opération d'entraînement d'un modèle
Entraînez votre modèle à l'aide des commandes curl
ou PowerShell suivantes.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- operation-id: remplacer par l'ID de votre opération d'entraînement.
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
GET https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
exécutez la commande suivante :
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id"
PowerShell
exécutez la commande suivante :
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id" | Select-Object -Expand Content
done: true
s'affiche sans erreur.
Vérifier la disponibilité du modèle
Une fois l'opération d'entraînement du modèle terminée, vous pouvez vérifier que votre modèle est disponible à l'aide des commandes curl
ou PowerShell suivantes pour répertorier les modèles de votre projet.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- dataset-id : remplacez cette valeur par l'identifiant de votre ensemble de données, et non par le nom à afficher.
- model-name : remplacez cette valeur par le nom que vous avez choisi pour votre modèle.
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
GET https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
exécutez la commande suivante :
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id"
PowerShell
exécutez la commande suivante :
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id" | Select-Object -Expand Content
Par exemple :
VCN1741767155885539328
.
Effectuer une prédiction
Vous pouvez demander des annotations (prédictions) pour les vidéos à l'aide de la commande batchPredict
. La commande batchPredict
prend en entrée un fichier CSV stocké dans votre bucket Cloud Storage et contenant les chemins d'accès aux vidéos à annoter, ainsi que les heures de début et de fin qui identifient la séquence de la vidéo à annoter. Pour ce guide de démarrage rapide, ce fichier CSV est nommé hmdb_split1_test_gs_predict.csv
.
Exécutez les commandes curl
ou PowerShell suivantes pour effectuer une requête de prédiction par lot (asynchrone).
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- input-uri : bucket Cloud Storage contenant le fichier que vous souhaitez annoter, y compris son nom. Doit commencer par gs://. Par exemple :
"inputUris": ["gs://automl-video-demo-data/hmdb_split1_test_gs_predict.csv"]
- output-bucket : remplacez cette valeur par le nom de votre bucket Cloud Storage. Par exemple :
my-project-vcm
- object-id : remplacez cette valeur par l'ID de l'opération d'importation de données.
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
POST https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models/model-id:batchPredict
Corps JSON de la requête :
{ "inputConfig": { "gcsSource": { "inputUris": [input-uri] } }, "outputConfig": { "gcsDestination": { "outputUriPrefix": "gs://output-bucket/object-id" } } }
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models/model-id:batchPredict "
PowerShell
Enregistrez le corps de la requête dans un fichier nommé request.json
, puis exécutez la commande suivante:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models/model-id:batchPredict " | Select-Object -Expand Content
Vous devriez recevoir un ID d'opération pour votre requête de prédiction par lot. Par exemple, VCN926615623331479552
.
Obtenir l'état de l'opération de prédiction
Vous pouvez interroger l'état de votre opération de prédiction par lot à l'aide des commandes curl
ou PowerShell suivantes.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- operation-id : remplacez cette valeur par l'ID de l'opération d'importation de données.
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
GET https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id
Pour envoyer votre requête, choisissez l'une des options suivantes :
curl
exécutez la commande suivante :
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id"
PowerShell
exécutez la commande suivante :
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/operations/operation-id" | Select-Object -Expand Content
done: true
dans l'état de l'opération, sans aucune erreur répertoriée, comme illustré dans l'exemple suivant.
Une fois la tâche de prédiction par lot terminée, le résultat de la prédiction est stocké dans le bucket Cloud Storage spécifié dans la commande. Chaque séquence vidéo est répertoriée dans un fichier JSON. Par exemple :
my-video-01.avi.json
{ "inputUris": ["gs://automl-video-demo-data/sample_video.avi"] "segment_classification_annotations": [ { "annotation_spec": { "display_name": "ApplyLipstick", "description": "ApplyLipstick" }, "segments": [ { "segment": { "start_time_offset": { }, "end_time_offset": { "seconds": 4, "nanos": 960000000 } }, "confidence": 0.43253016 }, { "segment": { "start_time_offset": { }, "end_time_offset": { "seconds": 4, "nanos": 960000000 } }, "confidence": 0.56746984 } ], "frames": [ ] } ], "shot_classification_annotations": [ { "annotation_spec": { "display_name": "ApplyLipstick", "description": "ApplyLipstick" }, "segments": [ { "segment": { "start_time_offset": { }, "end_time_offset": { "seconds": 5 } }, "confidence": 0.43253016 }, { "segment": { "start_time_offset": { }, "end_time_offset": { "seconds": 5 } }, "confidence": 0.56746984 } ], "frames": [ ] } ], "one_second_sliding_window_classification_annotations": [ { "annotation_spec": { "display_name": "ApplyLipstick", "description": "ApplyLipstick" }, "segments": [ ], "frames": [ { "time_offset": { "nanos": 800000000 }, "confidence": 0.54533803 }, { "time_offset": { "nanos": 800000000 }, ... "confidence": 0.57945728 }, { "time_offset": { "seconds": 4, "nanos": 300000000 }, "confidence": 0.42054281 } ] } ], "object_annotations": [ ], "error": { "details": [ ] } }
Effectuer un nettoyage
Pour éviter que les ressources utilisées sur cette page ne soient facturées sur votre compte Google Cloud, supprimez le projet Google Cloud contenant les ressources.
Si vous n'avez plus besoin de votre modèle ni de l'ensemble de données associé, vous pouvez les supprimer.
Répertorier les modèles
Vous pouvez répertorier les modèles de votre projet, ainsi que leurs identifiants, à l'aide des commandes curl
ou PowerShell suivantes :
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- model-name : nom complet du modèle fourni par la réponse lors de la création du modèle. Il a le format suivant : projects/project-number/locations/location-id/models
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
GET https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models
Pour envoyer votre requête, développez l'une des options suivantes :
Vous devriez recevoir une réponse JSON de ce type :
Supprimer un modèle
Vous pouvez supprimer un modèle à l'aide de la commande suivante.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- model-id : remplacez cette valeur par l'identifiant de votre modèle.
- Remarque :
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région sera déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
DELETE https://automl.googleapis.com/v1beta1/projects/project-number/locations/test/models/model-id
Pour envoyer votre requête, développez l'une des options suivantes :
Vous devriez recevoir une réponse JSON de ce type :
Répertorier des ensembles de données
Vous pouvez répertorier les ensembles de données de votre projet, ainsi que leurs identifiants, à l'aide des commandes curl
ou PowerShell suivantes :
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région est déterminée en fonction de l'emplacement du fichier vidéo.
Méthode HTTP et URL :
https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/datasets
Pour envoyer votre requête, développez l'une des options suivantes :
Vous devriez recevoir une réponse JSON de ce type :
Supprimer un ensemble de données
Vous pouvez supprimer un ensemble de données à l'aide des commandes curl
ou PowerShell suivantes.
REST
Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants:
- dataset-name : nom complet de votre ensemble de données, issu de la réponse obtenue lorsque vous avez créé l'ensemble de données. Il a le format suivant :
projects/project-number/locations/location-id/datasets/dataset-id
- project-number : numéro de votre projet.
- location-id : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes :
us-east1
,us-west1
,europe-west1
etasia-east1
. Si aucune région n'est spécifiée, une région est déterminée en fonction de l'emplacement du fichier vidéo. - dataset-id : ID fourni lors de la création de l'ensemble de données.
Méthode HTTP et URL :
DELETE https://automl.googleapis.com/v1beta1/dataset-name
Pour envoyer votre requête, développez l'une des options suivantes :
Vous devriez recevoir une réponse JSON de ce type :
Étapes suivantes
- En savoir plus sur le workflow de classification