Menggunakan Vertex AI Vector Search dengan RAG Engine

Halaman ini menunjukkan cara menghubungkan Mesin RAG ke Vertex AI Vector Search.

Anda juga dapat mengikutinya menggunakan notebook Mesin RAG dengan Vertex AI Vector Search ini.

RAG Engine adalah alat canggih yang menggunakan database vektor bawaan yang didukung oleh Spanner untuk menyimpan dan mengelola representasi vektor dokumen teks. Database vektor memungkinkan pengambilan dokumen yang relevan secara efisien berdasarkan kemiripan semantik dokumen dengan kueri tertentu. Dengan mengintegrasikan Vertex AI Vector Search sebagai database vektor tambahan dengan RAG Engine, Anda dapat menggunakan kemampuan Vector Search untuk menangani volume data dengan latensi rendah guna meningkatkan performa dan skalabilitas aplikasi RAG Anda.

Penyiapan Vertex AI Vector Search

Vertex AI Vector Search didasarkan pada teknologi Vector Search yang dikembangkan oleh riset Google. Dengan Vector Search, Anda dapat menggunakan infrastruktur yang sama yang menyediakan fondasi untuk produk Google seperti Google Penelusuran, YouTube, dan Google Play.

Untuk berintegrasi dengan RAG Engine, indeks Vector Search kosong diperlukan.

Menyiapkan Vertex AI SDK

Untuk menyiapkan Vertex AI SDK, lihat Penyiapan.

Membuat indeks Vector Search

Untuk membuat indeks Penelusuran Vektor yang kompatibel dengan Korpus RAG, indeks harus memenuhi kriteria berikut:

  1. IndexUpdateMethod harus STREAM_UPDATE, lihat Membuat indeks aliran data.

  2. Jenis pengukuran jarak harus ditetapkan secara eksplisit ke salah satu dari berikut:

    • DOT_PRODUCT_DISTANCE
    • COSINE_DISTANCE
  3. Dimensi vektor harus konsisten dengan model penyematan yang ingin Anda gunakan dalam korpus RAG. Parameter lain dapat disesuaikan berdasarkan pilihan Anda, yang menentukan apakah parameter tambahan dapat disesuaikan.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

def vector_search_create_streaming_index(
    project: str, location: str, display_name: str, gcs_uri: Optional[str] = None
) -> aiplatform.MatchingEngineIndex:
    """Create a vector search index.

    Args:
        project (str): Required. Project ID
        location (str): Required. The region name
        display_name (str): Required. The index display name
        gcs_uri (str): Optional. The Google Cloud Storage uri for index content

    Returns:
        The created MatchingEngineIndex.
    """
    # Initialize the Vertex AI client
    aiplatform.init(project=project, location=location)

    # Create Index
    index = aiplatform.MatchingEngineIndex.create_tree_ah_index(
        display_name=display_name,
        contents_delta_uri=gcs_uri,
        description="Matching Engine Index",
        dimensions=100,
        approximate_neighbors_count=150,
        leaf_node_embedding_count=500,
        leaf_nodes_to_search_percent=7,
        index_update_method="STREAM_UPDATE",  # Options: STREAM_UPDATE, BATCH_UPDATE
        distance_measure_type=aiplatform.matching_engine.matching_engine_index_config.DistanceMeasureType.DOT_PRODUCT_DISTANCE,
    )

    return index

Membuat endpoint indeks Vector Search

Endpoint publik didukung oleh RAG Engine.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

def vector_search_create_index_endpoint(
    project: str, location: str, display_name: str
) -> None:
    """Create a vector search index endpoint.

    Args:
        project (str): Required. Project ID
        location (str): Required. The region name
        display_name (str): Required. The index endpoint display name
    """
    # Initialize the Vertex AI client
    aiplatform.init(project=project, location=location)

    # Create Index Endpoint
    index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(
        display_name=display_name,
        public_endpoint_enabled=True,
        description="Matching Engine Index Endpoint",
    )

    print(index_endpoint.name)

Men-deploy indeks ke endpoint indeks

Sebelum melakukan penelusuran tetangga terdekat, indeks harus di-deploy ke endpoint indeks.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

def vector_search_deploy_index(
    project: str,
    location: str,
    index_name: str,
    index_endpoint_name: str,
    deployed_index_id: str,
) -> None:
    """Deploy a vector search index to a vector search index endpoint.

    Args:
        project (str): Required. Project ID
        location (str): Required. The region name
        index_name (str): Required. The index to update. A fully-qualified index
          resource name or a index ID.  Example:
          "projects/123/locations/us-central1/indexes/my_index_id" or
          "my_index_id".
        index_endpoint_name (str): Required. Index endpoint to deploy the index
          to.
        deployed_index_id (str): Required. The user specified ID of the
          DeployedIndex.
    """
    # Initialize the Vertex AI client
    aiplatform.init(project=project, location=location)

    # Create the index instance from an existing index
    index = aiplatform.MatchingEngineIndex(index_name=index_name)

    # Create the index endpoint instance from an existing endpoint.
    index_endpoint = aiplatform.MatchingEngineIndexEndpoint(
        index_endpoint_name=index_endpoint_name
    )

    # Deploy Index to Endpoint
    index_endpoint = index_endpoint.deploy_index(
        index=index, deployed_index_id=deployed_index_id
    )

    print(index_endpoint.deployed_indexes)

Jika ini adalah pertama kalinya Anda men-deploy indeks ke endpoint indeks, diperlukan waktu sekitar 30 menit untuk mem-build dan memulai backend secara otomatis sebelum indeks dapat disimpan. Setelah deployment pertama, indeks akan siap dalam beberapa detik. Untuk melihat status deployment indeks, buka Vector Search Console, pilih tab Index endpoints, lalu pilih endpoint indeks Anda.

Identifikasi nama resource indeks dan endpoint indeks Anda, yang memiliki format berikut:

  • projects/${PROJECT_ID}/locations/${LOCATION_ID}/indexes/${INDEX_ID}
  • projects/${PROJECT_ID}/locations/${LOCATION_ID}/indexEndpoints/${INDEX_ENDPOINT_ID}.

Menggunakan Vertex AI Vector Search di RAG Engine

Setelah instance Vector Search disiapkan, ikuti langkah-langkah di bagian ini untuk menetapkan instance Vector Search sebagai database vektor untuk aplikasi RAG.

Menetapkan database vektor untuk membuat korpus RAG

Saat membuat korpus RAG, tentukan hanya INDEX_ENDPOINT_NAME dan INDEX_NAME lengkap. Korpus RAG dibuat dan otomatis dikaitkan dengan indeks Penelusuran Vektor. Validasi dilakukan pada kriteria. Jika salah satu persyaratan tidak terpenuhi, permintaan akan ditolak.

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# vector_search_index_name = "projects/{PROJECT_ID}/locations/{LOCATION}/indexes/{INDEX_ID}"
# vector_search_index_endpoint_name = "projects/{PROJECT_ID}/locations/{LOCATION}/indexEndpoints/{INDEX_ENDPOINT_ID}"
# display_name = "test_corpus"
# description = "Corpus Description"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Configure embedding model (Optional)
embedding_model_config = rag.EmbeddingModelConfig(
    publisher_model="publishers/google/models/text-embedding-004"
)

# Configure Vector DB
vector_db = rag.VertexVectorSearch(
    index=vector_search_index_name, index_endpoint=vector_search_index_endpoint_name
)

corpus = rag.create_corpus(
    display_name=display_name,
    description=description,
    embedding_model_config=embedding_model_config,
    vector_db=vector_db,
)
print(corpus)
# Example response:
# RagCorpus(name='projects/1234567890/locations/us-central1/ragCorpora/1234567890',
# display_name='test_corpus', description='Corpus Description', embedding_model_config=...
# ...

REST

  # TODO(developer): Update and un-comment the following lines:
  # CORPUS_DISPLAY_NAME = "YOUR_CORPUS_DISPLAY_NAME"
  # Full index/indexEndpoint resource name
  # Index: projects/${PROJECT_ID}/locations/${LOCATION_ID}/indexes/${INDEX_ID}
  # IndexEndpoint: projects/${PROJECT_ID}/locations/${LOCATION_ID}/indexEndpoints/${INDEX_ENDPOINT_ID}
  # INDEX_RESOURCE_NAME = "YOUR_INDEX_ENDPOINT_RESOURCE_NAME"
  # INDEX_NAME = "YOUR_INDEX_RESOURCE_NAME"
  # Call CreateRagCorpus API to create a new RagCorpus
  curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" -H "Content-Type: application/json" https://${LOCATION_ID}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION_ID}/ragCorpora -d '{
        "display_name" : '\""${CORPUS_DISPLAY_NAME}"\"',
        "rag_vector_db_config" : {
                "vertex_vector_search": {
                  "index":'\""${INDEX_NAME}"\"'
              "index_endpoint":'\""${INDEX_ENDPOINT_NAME}"\"'
                }
          }
    }'

  # Call ListRagCorpora API to verify the RagCorpus is created successfully
  curl -sS -X GET \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  "https://${LOCATION_ID}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION_ID}/ragCorpora"

Mengimpor file menggunakan RAG API

Gunakan ImportRagFiles API untuk mengimpor file dari Cloud Storage atau Google Drive ke indeks Vector Search. File disematkan dan disimpan dalam indeks Vector Search.

REST

# TODO(developer): Update and uncomment the following lines:
# RAG_CORPUS_ID = "your-rag-corpus-id"
#
# Google Cloud Storage bucket/file location.
# For example, "gs://rag-fos-test/"
# GCS_URIS= "your-gcs-uris"

# Call ImportRagFiles API to embed files and store in the BigQuery table
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/us-central1/ragCorpora/${RAG_CORPUS_ID}/ragFiles:import \
-d '{
  "import_rag_files_config": {
    "gcs_source": {
      "uris": '\""${GCS_URIS}"\"'
    },
    "rag_file_chunking_config": {
      "chunk_size": 512
    }
  }
}'

# Call ListRagFiles API to verify the files are imported successfully
curl -X GET \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
https://us-central1-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/us-central1/ragCorpora/${RAG_CORPUS_ID}/ragFiles

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"
# paths = ["https://drive.google.com/file/123", "gs://my_bucket/my_files_dir"]  # Supports Google Cloud Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.import_files(
    corpus_name=corpus_name,
    paths=paths,
    chunk_size=512,  # Optional
    chunk_overlap=100,  # Optional
    max_embedding_requests_per_min=900,  # Optional
)
print(f"Imported {response.imported_rag_files_count} files.")
# Example response:
# Imported 2 files.

Mengambil konteks yang relevan menggunakan RAG API

Setelah impor file selesai, konteks yang relevan dapat diambil dari indeks Vector Search menggunakan RetrieveContexts API.

REST

# TODO(developer): Update and uncomment the following lines:
# RETRIEVAL_QUERY="your-retrieval-query"
#
# Full RAG corpus resource name
# Format:
# "projects/${PROJECT_ID}/locations/us-central1/ragCorpora/${RAG_CORPUS_ID}"
# RAG_CORPUS_RESOURCE="your-rag-corpus-resource"

# Call RetrieveContexts API to retrieve relevant contexts
curl -X POST \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
https://us-central1-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/us-central1:retrieveContexts \
  -d '{
    "vertex_rag_store": {
      "rag_resources": {
          "rag_corpus": '\""${RAG_CORPUS_RESOURCE}"\"',
        },
    },
    "query": {
      "text": '\""${RETRIEVAL_QUERY}"\"',
      "similarity_top_k": 10
    }
  }'

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.


from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/[PROJECT_ID]/locations/us-central1/ragCorpora/[rag_corpus_id]"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=corpus_name,
            # Optional: supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="Hello World!",
    similarity_top_k=10,  # Optional
    vector_distance_threshold=0.5,  # Optional
)
print(response)
# Example response:
# contexts {
#   contexts {
#     source_uri: "gs://your-bucket-name/file.txt"
#     text: "....
#   ....

Membuat konten menggunakan Vertex AI Gemini API

Untuk membuat konten menggunakan model Gemini, lakukan panggilan ke Vertex AI GenerateContent API. Dengan menentukan RAG_CORPUS_RESOURCE dalam permintaan, API akan otomatis mengambil data dari indeks Vector Search.

REST

# TODO(developer): Update and uncomment the following lines:
# MODEL_ID=gemini-1.5-flash-001
# GENERATE_CONTENT_PROMPT="your-generate-content-prompt"

# GenerateContent with contexts retrieved from the FeatureStoreOnline index
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json"  https://us-central1-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:generateContent \
-d '{
  "contents": {
    "role": "user",
    "parts": {
      "text": '\""${GENERATE_CONTENT_PROMPT}"\"'
    }
  },
  "tools": {
    "retrieval": {
      "vertex_rag_store": {
        "rag_resources": {
            "rag_corpus": '\""${RAG_CORPUS_RESOURCE}"\"',
          },
        "similarity_top_k": 8,
        "vector_distance_threshold": 0.32
      }
    }
  }
}'

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.


from vertexai.preview import rag
from vertexai.preview.generative_models import GenerativeModel, Tool
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

rag_retrieval_tool = Tool.from_retrieval(
    retrieval=rag.Retrieval(
        source=rag.VertexRagStore(
            rag_resources=[
                rag.RagResource(
                    rag_corpus=corpus_name,
                    # Optional: supply IDs from `rag.list_files()`.
                    # rag_file_ids=["rag-file-1", "rag-file-2", ...],
                )
            ],
            similarity_top_k=3,  # Optional
            vector_distance_threshold=0.5,  # Optional
        ),
    )
)

rag_model = GenerativeModel(
    model_name="gemini-1.5-flash-001", tools=[rag_retrieval_tool]
)
response = rag_model.generate_content("Why is the sky blue?")
print(response.text)
# Example response:
#   The sky appears blue due to a phenomenon called Rayleigh scattering.
#   Sunlight, which contains all colors of the rainbow, is scattered
#   by the tiny particles in the Earth's atmosphere....
#   ...

Langkah selanjutnya