Retrieval-augmented generation (RAG) memberi model bahasa besar (LLM) akses ke sumber pengetahuan eksternal, seperti dokumen dan {i>database<i}. Dengan menggunakan RAG, LLM dapat menghasilkan respons yang lebih akurat dan informatif berdasarkan data yang sumber pengetahuan eksternal.
Untuk informasi selengkapnya tentang cara kerja RAG, lihat LlamaIndex di Vertex AI untuk RAG API. Untuk mengetahui informasi tentang model pembuatan yang didukung, lihat Model pembuatan yang didukung. Untuk informasi tentang model penyematan yang didukung, lihat Model penyematan yang didukung.
Contoh sintaksis
Sintaksis untuk membuat korpus RAG.
curl
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora\ -d '{ "display_name" : "...", "description": "...", "rag_embedding_model_config": { "vertex_prediction_endpoint": { "endpoint": "..." } } }'
Python
corpus = rag.create_corpus(display_name=..., description=...) print(corpus)
Daftar parameter
Lihat contoh untuk mengetahui detail penerapan.
Pengelolaan korpus
Untuk informasi tentang korpus RAG, lihat Pengelolaan indeks.
Membuat RagCorpus
Parameter | |
---|---|
|
Opsional: Nama tampilan RagCorpus. |
|
Opsional: Deskripsi RagCorpus. |
|
Opsional: Model embedding yang akan digunakan untuk RagCorpus. |
Mencantumkan RagCorpora
Parameter | |
---|---|
|
Opsional: Ukuran halaman daftar standar. |
|
Opsional: Token halaman daftar standar. Biasanya diperoleh dari |
Dapatkan RagCorpus
Parameter | |
---|---|
|
ID resource |
Hapus RagCorpus
Parameter | |
---|---|
|
ID resource |
Pengelolaan file
Untuk informasi tentang file RAG, lihat Pengelolaan file.
Mengupload RagFile
Parameter | |
---|---|
|
ID resource |
|
Opsional: Nama tampilan RagCorpus. |
|
Opsional: Deskripsi RagCorpus. |
Impor RagFile
Parameter | |
---|---|
|
ID resource |
|
URI Cloud Storage yang berisi file upload. |
|
Opsional: Jenis resource Google Drive. |
|
Opsional: ID resource Google Drive. |
|
Opsional: Jumlah token yang harus dimiliki setiap potongan. |
|
Opsional: Jumlah token yang tumpang tindih di antara dua potongan. |
|
Opsional: Angka yang mewakili batas untuk membatasi frekuensi LlamaIndex memanggil model penyematan selama proses pengindeksan. Batas default-nya adalah |
Parameter | |
---|---|
|
ID resource |
|
Opsional: Ukuran halaman daftar standar. |
|
Opsional: Token halaman daftar standar. Biasanya diperoleh dari |
Mendapatkan RagFile
Parameter | |
---|---|
|
ID resource |
Menghapus RagFile
Parameter | |
---|---|
|
ID resource |
Pengambilan dan prediksi
Retrieval
Parameter | Deskripsi |
---|---|
similarity_top_k |
Mengontrol jumlah maksimum konteks yang diambil. |
vector_distance_threshold |
Hanya konteks dengan jarak yang lebih kecil dari batas yang akan dipertimbangkan. |
Prediksi
Parameter | |
---|---|
|
model LLM untuk pembuatan konten. |
|
Nama resource RagCorpus. Format: |
|
Teks ke LLM untuk pembuatan konten. Nilai maksimum: 1 daftar. |
|
Opsional: Hanya konteks dengan jarak vektor lebih kecil dari nilai minimum yang ditampilkan. |
|
Opsional: Jumlah konteks teratas yang akan diambil. |
Contoh
Contoh-contoh berikut menunjukkan manajemen korpus, manajemen file, dan untuk pengambilan data, dan prediksi.
Membuat korpus RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- CORPUS_DISPLAY_NAME: Nama tampilan
RagCorpus
. - CORPUS_DESCRIPTION: Deskripsi
RagCorpus
. - RAG_EMBEDDING_MODEL_CONFIG_ENDPOINT: Model penyematan
RagCorpus
.
Metode HTTP dan URL:
POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora
Isi JSON permintaan:
{ "display_name" : "CORPUS_DISPLAY_NAME", "description": "CORPUS_DESCRIPTION", "rag_embedding_model_config_endpoint": "RAG_EMBEDDING_MODEL_CONFIG_ENDPOINT" }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
lalu jalankan perintah berikut:
curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora" | Select-Object -Expand Content
Contoh berikut menunjukkan cara membuat korpus RAG menggunakan REST Compute Engine API.
// Either your first party publisher model or fine-tuned endpoint
// Example: projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/textembedding-gecko@003
// or
// Example: projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/12345
ENDPOINT_NAME=${RAG_EMBEDDING_MODEL_CONFIG_ENDPOINT}
// Corpus display name
// Such as "my_test_corpus"
CORPUS_DISPLAY_NAME=YOUR_CORPUS_DISPLAY_NAME
// CreateRagCorpus
// Input: ENDPOINT, PROJECT_ID, CORPUS_DISPLAY_NAME
// Output: CreateRagCorpusOperationMetadata
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora \
-d '{
"display_name" : '\""${CORPUS_DISPLAY_NAME}"\"',
"rag_embedding_model_config" : {
"vertex_prediction_endpoint": {
"endpoint": '\""${ENDPOINT_NAME}"\"'
}
}
}'
// Poll the operation status.
// The last component of the RagCorpus "name" field is the server-generated
// rag_corpus_id: (only Bold part)
// projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/7454583283205013504.
OPERATION_ID=OPERATION_ID
poll_op_wait ${OPERATION_ID}
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Cantumkan korpus RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- PAGE_SIZE: Ukuran halaman daftar standar. Anda dapat menyesuaikan jumlah
RagCorpora
yang ditampilkan per halaman dengan memperbarui parameterpage_size
. - PAGE_TOKEN: Token halaman daftar standar. Diperoleh biasanya menggunakan
ListRagCorporaResponse.next_page_token
dari panggilanVertexRagDataService.ListRagCorpora
sebelumnya.
Metode HTTP dan URL:
GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN"
PowerShell
Jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora?page_size=PAGE_SIZE&page_token=PAGE_TOKEN" | Select-Object -Expand Content
RagCorpora
berdasarkan PROJECT_ID
yang diberikan.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Dapatkan korpus RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- RAG_CORPUS_ID: ID resource
RagCorpus
.
Metode HTTP dan URL:
GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID"
PowerShell
Jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID" | Select-Object -Expand Content
RagCorpus
.
Perintah get
dan list
digunakan dalam contoh untuk menunjukkan cara
RagCorpus
menggunakan kolom rag_embedding_model_config
, yang mengarah ke
model embedding yang dipilih.
// Server-generated rag_corpus_id in CreateRagCorpus
RAG_CORPUS_ID=RAG_CORPUS_ID
// GetRagCorpus
// Input: ENDPOINT, PROJECT_ID, RAG_CORPUS_ID
// Output: RagCorpus
curl -X GET \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${RAG_CORPUS_ID}
// ListRagCorpora
curl -sS -X GET \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora"
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Menghapus korpus RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- RAG_CORPUS_ID: ID resource
RagCorpus
.
Metode HTTP dan URL:
DELETE https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X DELETE \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID"
PowerShell
Jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID" | Select-Object -Expand Content
DeleteOperationMetadata
.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Mengupload file RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- RAG_CORPUS_ID: ID resource
RagCorpus
. - INPUT_FILE: Jalur file lokal.
- FILE_DISPLAY_NAME: Nama tampilan
RagFile
. - RAG_FILE_DESCRIPTION: Deskripsi
RagFile
.
Metode HTTP dan URL:
POST https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload
Isi JSON permintaan:
{ "rag_file": { "display_name": "FILE_DISPLAY_NAME", "description": "RAG_FILE_DESCRIPTION" } }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama INPUT_FILE
,
lalu jalankan perintah berikut:
curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @INPUT_FILE \
"https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload"
PowerShell
Simpan isi permintaan dalam file bernama INPUT_FILE
,
dan jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile INPUT_FILE `
-Uri "https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:upload" | Select-Object -Expand Content
RagFile
. Komponen terakhir kolom RagFile.name
adalah rag_file_id
yang dibuat server.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Mengimpor file RAG
File dan folder dapat diimpor dari Drive atau Cloud Storage.
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- RAG_CORPUS_ID: ID resource
RagCorpus
. - GCS_URIS: Daftar lokasi Cloud Storage. Contoh:
gs://my-bucket1, gs://my-bucket2
. - DRIVE_RESOURCE_ID: ID resource Drive. Contoh:
https://drive.google.com/file/d/ABCDE
https://drive.google.com/corp/drive/u/0/folders/ABCDEFG
- DRIVE_RESOURCE_TYPE: Jenis resource Drive. Opsi:
RESOURCE_TYPE_FILE
- FileRESOURCE_TYPE_FOLDER
- Folder- CHUNK_SIZE: Opsional: Jumlah token yang harus dimiliki setiap potongan.
- CHUNK_OVERLAP: Opsional: Jumlah token yang tumpang-tindih di antara potongan.
Metode HTTP dan URL:
POST https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import
Isi JSON permintaan:
{ "import_rag_files_config": { "gcs_source": { "uris": GCS_URIS }, "google_drive_source": { "resource_ids": { "resource_id": DRIVE_RESOURCE_ID, "resource_type": DRIVE_RESOURCE_TYPE }, } } }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
lalu jalankan perintah berikut:
curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/upload/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import" | Select-Object -Expand Content
ImportRagFilesOperationMetadata
.
Contoh berikut menunjukkan cara mengimpor file dari
yang sesuai di Cloud Storage. Menggunakan kolom kontrol max_embedding_requests_per_min
untuk membatasi frekuensi di mana LlamaIndex memanggil model embedding
Proses pengindeksan ImportRagFiles
. Kolom ini memiliki nilai default panggilan 1000
per menit.
// Cloud Storage bucket/file location.
// Such as "gs://rag-e2e-test/"
GCS_URIS=YOUR_GCS_LOCATION
// Enter the QPM rate to limit RAG's access to your embedding model
// Example: 1000
EMBEDDING_MODEL_QPM_RATE=MAX_EMBEDDING_REQUESTS_PER_MIN_LIMIT
// ImportRagFiles
// Import a single Cloud Storage file or all files in a Cloud Storage bucket.
// Input: ENDPOINT, PROJECT_ID, RAG_CORPUS_ID, GCS_URIS
// Output: ImportRagFilesOperationMetadataNumber
// Use ListRagFiles to find the server-generated rag_file_id.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${RAG_CORPUS_ID}/ragFiles:import \
-d '{
"import_rag_files_config": {
"gcs_source": {
"uris": '\""${GCS_URIS}"\"'
},
"rag_file_chunking_config": {
"chunk_size": 512
},
"max_embedding_requests_per_min": '"${EMBEDDING_MODEL_QPM_RATE}"'
}
}'
// Poll the operation status.
// The response contains the number of files imported.
OPERATION_ID=OPERATION_ID
poll_op_wait ${OPERATION_ID}
Contoh berikut menunjukkan cara mengimpor file dari Drive.
Gunakan kolom kontrol max_embedding_requests_per_min
untuk membatasi kapasitas di
LlamaIndex yang memanggil model penyematan selama pengindeksan ImportRagFiles
{i>checkout<i}. Kolom ini memiliki nilai default 1000
panggilan per menit.
// Google Drive folder location.
FOLDER_RESOURCE_ID=YOUR_GOOGLE_DRIVE_FOLDER_RESOURCE_ID
// Enter the QPM rate to limit RAG's access to your embedding model
// Example: 1000
EMBEDDING_MODEL_QPM_RATE=MAX_EMBEDDING_REQUESTS_PER_MIN_LIMIT
// ImportRagFiles
// Import all files in a Google Drive folder.
// Input: ENDPOINT, PROJECT_ID, RAG_CORPUS_ID, FOLDER_RESOURCE_ID
// Output: ImportRagFilesOperationMetadataNumber
// Use ListRagFiles to find the server-generated rag_file_id.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${ENDPOINT}/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/ragCorpora/${RAG_CORPUS_ID}/ragFiles:import \
-d '{
"import_rag_files_config": {
"google_drive_source": {
"resource_ids": {
"resource_id": '\""${FOLDER_RESOURCE_ID}"\"',
"resource_type": "RESOURCE_TYPE_FOLDER"
}
},
"max_embedding_requests_per_min": '"${EMBEDDING_MODEL_QPM_RATE}"'
}
}'
// Poll the operation status.
// The response contains the number of files imported.
OPERATION_ID=OPERATION_ID
poll_op_wait ${OPERATION_ID}
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Mendapatkan file RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- RAG_CORPUS_ID: ID resource
RagCorpus
. - RAG_FILE_ID: ID resource
RagFile
.
Metode HTTP dan URL:
GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID"
PowerShell
Jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID" | Select-Object -Expand Content
RagFile
.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Membuat daftar file RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- RAG_CORPUS_ID: ID resource
RagCorpus
. - PAGE_SIZE: Ukuran halaman daftar standar. Anda dapat menyesuaikan jumlah
RagFiles
yang ditampilkan per halaman dengan memperbarui parameterpage_size
. - PAGE_TOKEN: Token halaman daftar standar. Diperoleh biasanya menggunakan
ListRagFilesResponse.next_page_token
dari panggilanVertexRagDataService.ListRagFiles
sebelumnya.
Metode HTTP dan URL:
GET https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X GET \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN"
PowerShell
Jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles?page_size=PAGE_SIZE&page_token=PAGE_TOKEN" | Select-Object -Expand Content
RagFiles
di bawah RAG_CORPUS_ID
yang diberikan.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Menghapus file RAG
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- RAG_CORPUS_ID: ID resource
RagCorpus
. - RAG_FILE_ID: ID resource
RagFile
. Format:projects/{project}/locations/{location}/ragCorpora/{rag_corpus}/ragFiles/{rag_file_id}
.
Metode HTTP dan URL:
DELETE https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X DELETE \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID"
PowerShell
Jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles/RAG_FILE_ID" | Select-Object -Expand Content
DeleteOperationMetadata
.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Kueri pengambilan
Saat pengguna mengajukan pertanyaan atau memberikan perintah, komponen pengambilan dalam RAG akan menelusuri pusat informasinya untuk menemukan informasi yang relevan dengan kueri.
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- LOCATION: Region untuk memproses permintaan.
- PROJECT_ID: Project ID Anda.
- RAG_CORPUS_RESOURCE: Nama resource
RagCorpus
. Format:projects/{project}/locations/{location}/ragCorpora/{rag_corpus}
. - VECTOR_DISTANCE_THRESHOLD: Hanya konteks dengan jarak vektor lebih kecil dari nilai minimum yang ditampilkan.
- TEXT: Teks kueri untuk mendapatkan konteks yang relevan.
- SIMILARITY_TOP_K: Jumlah konteks teratas yang akan diambil.
Metode HTTP dan URL:
POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts
Isi JSON permintaan:
{ "vertex_rag_store": { "rag_resources": { "rag_corpus": "RAG_CORPUS_RESOURCE", }, "vector_distance_threshold": 0.8 }, "query": { "text": "TEXT", "similarity_top_k": SIMILARITY_TOP_K } }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
lalu jalankan perintah berikut:
curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts" | Select-Object -Expand Content
RagFiles
terkait.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Prediksi
Prediksi mengontrol metode LLM yang menghasilkan konten.
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan.
- MODEL_ID: Model LLM untuk pembuatan konten. Contoh:
gemini-1.5-pro-001
- GENERATION_METHOD: Metode LLM untuk pembuatan konten. Opsi:
generateContent
,streamGenerateContent
- INPUT_PROMPT: Teks yang dikirim ke LLM untuk pembuatan konten. Coba gunakan perintah yang relevan dengan File kain yang diupload.
- RAG_CORPUS_RESOURCE: Nama resource
RagCorpus
. Format:projects/{project}/locations/{location}/ragCorpora/{rag_corpus}
. - SIMILARITY_TOP_K: Opsional: Jumlah konteks teratas yang akan diambil.
- VECTOR_DISTANCE_THRESHOLD: Opsional: Konteks dengan jarak vektor yang lebih kecil dari nilai minimum akan ditampilkan.
Metode HTTP dan URL:
POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD
Isi JSON permintaan:
{ "contents": { "role": "user", "parts": { "text": "INPUT_PROMPT" } }, "tools": { "retrieval": { "disable_attribution": false, "vertex_rag_store": { "rag_resources": { "rag_corpus": "RAG_CORPUS_RESOURCE", }, "similarity_top_k": SIMILARITY_TOP_K, "vector_distance_threshold": VECTOR_DISTANCE_THRESHOLD } } } }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
lalu jalankan perintah berikut:
curl -X POST \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$headers = @{ }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD" | Select-Object -Expand Content
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Dokumentasi referensi Python API.
Langkah Berikutnya
- Pelajari model pembuatan yang didukung.
- Pelajari model penyematan yang didukung.
- Untuk dokumentasi mendetail, lihat Ringkasan LlamaIndex di Vertex AI untuk RAG.