使用 Gemini 处理 PDF 文件
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
此示例展示了如何使用 Gemini 处理 PDF 文档。
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[],[],null,["# Process a PDF file with Gemini\n\nThis sample shows you how to process a PDF document using Gemini.\n\nCode sample\n-----------\n\n### C#\n\n\nBefore trying this sample, follow the C# setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI C# API\nreference documentation](/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n using https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.html;\n using System;\n using System.Threading.Tasks;\n\n public class PdfInput\n {\n public async Task\u003cstring\u003e SummarizePdf(\n string projectId = \"your-project-id\",\n string location = \"us-central1\",\n string publisher = \"google\",\n string model = \"gemini-2.0-flash-001\")\n {\n\n var predictionServiceClient = new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.PredictionServiceClientBuilder.html\n {\n Endpoint = $\"{location}-aiplatform.googleapis.com\"\n }.Build();\n\n string prompt = @\"You are a very professional document summarization specialist.\n Please summarize the given document.\";\n\n var generateContentRequest = new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentRequest.html\n {\n Model = $\"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}\",\n Contents =\n {\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Content.html\n {\n Role = \"USER\",\n Parts =\n {\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Part.html { Text = prompt },\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Part.html { FileData = new() { MimeType = \"application/pdf\", FileUri = \"gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf\" }}\n }\n }\n }\n };\n\n https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentResponse.html response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);\n\n string responseText = response.https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentResponse.html#Google_Cloud_AIPlatform_V1_GenerateContentResponse_Candidates[0].https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Content.html.Parts[0].Text;\n Console.WriteLine(responseText);\n\n return responseText;\n }\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n const {VertexAI} = require('https://cloud.google.com/nodejs/docs/reference/vertexai/latest/overview.html');\n\n /**\n * TODO(developer): Update these variables before running the sample.\n */\n async function analyze_pdf(projectId = 'PROJECT_ID') {\n const vertexAI = new https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({project: projectId, location: 'us-central1'});\n\n const generativeModel = vertexAI.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({\n model: 'gemini-2.0-flash-001',\n });\n\n const filePart = {\n fileData: {\n fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',\n mimeType: 'application/pdf',\n },\n };\n const textPart = {\n text: `\n You are a very professional document summarization specialist.\n Please summarize the given document.`,\n };\n\n const request = {\n contents: [{role: 'user', parts: [filePart, textPart]}],\n };\n\n const resp = await generativeModel.generateContent(request);\n const contentResponse = await resp.response;\n console.log(JSON.stringify(contentResponse));\n }\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]