Gemini 1.5 Pro で音声ファイルを要約する

このサンプルでは、音声ファイルを使用してポッドキャストを要約する方法について説明します。このサンプルは、Gemini 1.5 Pro でのみ動作します。

もっと見る

このコードサンプルを含む詳細なドキュメントについては、以下をご覧ください。

コードサンプル

C#

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある C# の設定手順を完了してください。 詳細については、Vertex AI C# API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class AudioInputSummarization
{
    public async Task<string> SummarizeAudio(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Please provide a summary for the audio.
Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
Do not make up any information that is not part of the audio and do not be verbose.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "audio/mp3", FileUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Go

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。詳細については、Vertex AI Go API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// summarizeAudio shows how to send an audio asset and a text question to a model, writing the response to the
// provided io.Writer.
func summarizeAudio(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.SetTemperature(0.4)

	// Given an audio file URL, prepare audio file as genai.Part
	part := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("pixel.mp3")),
		FileURI:  "gs://cloud-samples-data/generative-ai/audio/pixel.mp3",
	}

	res, err := model.GenerateContent(ctx, part, genai.Text(`
		Please provide a summary for the audio.
		Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
		Do not make up any information that is not part of the audio and do not be verbose.
	`,
	))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated summary:\n%s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class AudioInputSummarization {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    summarizeAudio(projectId, location, modelName);
  }

  // Analyzes the given audio input.
  public static String summarizeAudio(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String audioUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "Please provide a summary for the audio.\n"
                  + "Provide chapter titles with timestamps, be concise and short, "
                  + "no need to provide chapter summaries.\n"
                  + "Do not make up any information that is not part of the audio "
                  + "and do not be verbose.",
              PartMaker.fromMimeTypeAndData("audio/mp3", audioUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function summarize_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/audio/pixel.mp3',
      mime_type: 'audio/mpeg',
    },
  };
  const textPart = {
    text: `
    Please provide a summary for the audio.
    Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
    Do not make up any information that is not part of the audio and do not be verbose.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Python

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vertex AI Python API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。


import vertexai
from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = """
Please provide a summary for the audio.
Provide chapter titles, be concise and short, no need to provide chapter summaries.
Do not make up any information that is not part of the audio and do not be verbose.
"""

audio_file_uri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3"
audio_file = Part.from_uri(audio_file_uri, mime_type="audio/mpeg")

contents = [audio_file, prompt]

response = model.generate_content(contents)
print(response.text)
# Example response:
# **Made By Google Podcast Summary**
# **Chapter Titles:**
# * Introduction
# * Transformative Pixel Features
# ...

次のステップ

他の Google Cloud プロダクトに関連するコードサンプルの検索およびフィルタ検索を行うには、Google Cloud のサンプルをご覧ください。