Gemini 1.5 Pro で画像、動画、音声、テキストを処理する
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
このサンプルでは、画像、動画、音声、テキストを同時に処理する方法を示します。このサンプルは、Gemini 1.5 Pro でのみ動作します。
コードサンプル
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],[],[],[],null,["# Process images, video, audio, and text with Gemini 1.5 Pro\n\nThis sample shows you how to process images, video, audio, and text at the same time. This sample works with Gemini 1.5 Pro only.\n\nCode sample\n-----------\n\n### C#\n\n\nBefore trying this sample, follow the C# setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI C# API\nreference documentation](/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n using https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.html;\n using System;\n using System.Threading.Tasks;\n\n public class MultimodalAllInput\n {\n public async Task\u003cstring\u003e AnswerFromMultimodalInput(\n string projectId = \"your-project-id\",\n string location = \"us-central1\",\n string publisher = \"google\",\n string model = \"gemini-2.0-flash-001\")\n {\n\n var predictionServiceClient = new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.PredictionServiceClientBuilder.html\n {\n Endpoint = $\"{location}-aiplatform.googleapis.com\"\n }.Build();\n\n string prompt = \"Watch each frame in the video carefully and answer the questions.\\n\"\n + \"Only base your answers strictly on what information is available in \"\n + \"the video attached. Do not make up any information that is not part \"\n + \"of the video and do not be too verbose, be to the point.\\n\\n\"\n + \"Questions:\\n\"\n + \"- When is the moment in the image happening in the video? \"\n + \"Provide a timestamp.\\n\"\n + \"- What is the context of the moment and what does the narrator say about it?\";\n\n var generateContentRequest = new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentRequest.html\n {\n Model = $\"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}\",\n Contents =\n {\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Content.html\n {\n Role = \"USER\",\n Parts =\n {\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Part.html { Text = prompt },\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Part.html { FileData = new() { MimeType = \"video/mp4\", FileUri = \"gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4\" } },\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Part.html { FileData = new() { MimeType = \"image/png\", FileUri = \"gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png\" } }\n }\n }\n }\n };\n\n https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentResponse.html response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);\n\n string responseText = response.https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentResponse.html#Google_Cloud_AIPlatform_V1_GenerateContentResponse_Candidates[0].https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Content.html.Parts[0].Text;\n Console.WriteLine(responseText);\n\n return responseText;\n }\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n const {VertexAI} = require('https://cloud.google.com/nodejs/docs/reference/vertexai/latest/overview.html');\n\n /**\n * TODO(developer): Update these variables before running the sample.\n */\n async function analyze_all_modalities(projectId = 'PROJECT_ID') {\n const vertexAI = new https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({project: projectId, location: 'us-central1'});\n\n const generativeModel = vertexAI.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({\n model: 'gemini-2.0-flash-001',\n });\n\n const videoFilePart = {\n file_data: {\n file_uri:\n 'gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4',\n mime_type: 'video/mp4',\n },\n };\n const imageFilePart = {\n file_data: {\n file_uri:\n 'gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png',\n mime_type: 'image/png',\n },\n };\n\n const textPart = {\n text: `\n Watch each frame in the video carefully and answer the questions.\n Only base your answers strictly on what information is available in the video attached.\n Do not make up any information that is not part of the video and do not be too\n verbose, be to the point.\n\n Questions:\n - When is the moment in the image happening in the video? Provide a timestamp.\n - What is the context of the moment and what does the narrator say about it?`,\n };\n\n const request = {\n contents: [{role: 'user', parts: [videoFilePart, imageFilePart, textPart]}],\n };\n\n const resp = await generativeModel.generateContent(request);\n const contentResponse = await resp.response;\n console.log(JSON.stringify(contentResponse));\n }\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]