CountTokens API

Die CountTokens API berechnet die Anzahl der Eingabetokens, bevor eine Anfrage an die Gemini API gesendet wird.

Mit der CountTokens API können Sie verhindern, dass Anfragen das Modellkontextfenster überschreiten, und potenzielle Kosten anhand der abrechenbaren Zeichen oder Tokens schätzen.

Die CountTokens API kann denselben contents-Parameter wie die Gemini API-Inferenzanfragen verwenden.

Unterstützte Modelle

Parameterliste

Diese Klasse besteht aus zwei Hauptattributen: role und parts. Das Attribut role bezeichnet die Person, die den Inhalt erzeugt, während das Attribut parts mehrere Elemente enthält, die jeweils ein Datensegment innerhalb einer Nachricht darstellen.

Parameter

role

Optional: string

Die Identität der Entität, die die Nachricht erstellt. Legen Sie den String auf einen der folgenden Werte fest:

  • user: Gibt an, dass die Nachricht von einer realen Person gesendet wurde. Zum Beispiel eine von Nutzern erstellte Nachricht.
  • model: Gibt an, dass die Nachricht vom Modell generiert wird.

Der Wert model wird verwendet, um Nachrichten aus dem Modell in die Unterhaltung einzufügen, die Unterhaltungen über mehrere Themen führen.

Bei Unterhaltungen, die nicht mehrere Themen enthalten, kann dieses Feld leer bleiben oder nicht festgelegt werden.

parts

part

Eine Liste geordneter Teile einer einzelnen Nachricht. Verschiedene Teile haben möglicherweise unterschiedliche IANA-MIME-Typen.

Part

Ein Datentyp mit Medien, die Teil einer mehrteiligen Content-Nachricht sind.

Parameter

text

Optional: string

Ein Text-Prompt oder ein Code-Snippet.

inline_data

Optional: Blob

Inline-Daten in Rohbyte.

file_data

Optional: FileData

In einer Datei gespeicherte Daten.

Blob

Inhalts-Blob Wenn möglich, senden Sie dies als Text und nicht als Rohbyte.

Parameter

mime_type

string

IANA-MIME-Typ der Daten.

data

bytes

Rohbyte.

FileData

URI-basierte Daten.

Parameter

mime_type

string

IANA-MIME-Typ der Daten.

file_uri

string

Der Cloud Storage-URI der Datei, in der die Daten gespeichert werden

system_instruction

Dieses Feld ist für vom Nutzer angegebene system_instructions gedacht. Er ist mit contents identisch, allerdings mit eingeschränkter Unterstützung der Inhaltstypen.

Parameter

role

string

IANA-MIME-Typ der Daten. Dieses Feld wird intern ignoriert.

parts

Part

Nur Text Anweisungen, die Nutzer an das Modell übergeben möchten.

FunctionDeclaration

Eine strukturierte Darstellung einer Funktionsdeklaration gemäß der Definition der OpenAPI 3.0-Spezifikation, die eine Funktion darstellt, für die das Modell JSON-Eingaben generieren kann.

Parameter

name

string

Der Name der aufzurufenden Funktion.

description

Optional: string

Beschreibung und Zweck der Funktion.

parameters

Optional: Schema

Beschreibt die Parameter der Funktion im OpenAPI-JSON-Schemaobjektformat: OpenAPI 3.0-Spezifikation.

response

Optional: Schema

Beschreibt die Ausgabe der Funktion im OpenAPI-JSON-Schemaobjektformat: OpenAPI 3.0-Spezifikation.

Beispiele

Tokenanzahl aus Text-Prompt abrufen

In diesem Beispiel werden die Tokens eines einzelnen Text-Prompts gezählt:

REST

Wenn Sie mithilfe der Vertex AI API die Tokenanzahl und die Anzahl der abrechenbaren Zeichen für einen Prompt abrufen möchten, senden Sie eine POST-Anfrage an den Publisher-Modellendpunkt.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll. Folgende Optionen sind verfügbar:

    Klicken Sie, um eine unvollständige Liste der verfügbaren Regionen einzublenden

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Ihre Projekt-ID.
  • MODEL_ID: die Modell-ID des multimodalen Modells, das Sie verwenden möchten.
  • ROLE: Die Rolle in einer Unterhaltung, die mit dem Inhalt verknüpft ist. Die Angabe einer Rolle ist auch bei Anwendungsfällen mit nur einem Schritt erforderlich. Unter anderem sind folgende Werte zulässig:
    • USER: Gibt Inhalte an, die von Ihnen gesendet werden
  • TEXT: Die Textanleitung, die in den Prompt eingefügt werden soll.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

JSON-Text der Anfrage:

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }]
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

Python

Installieren

pip install --upgrade google-genai

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents="What's the highest mountain in Africa?",
)
print(response)
# Example output:
# total_tokens=10
# cached_content_token_count=None

Go

Informationen zum Installieren oder Aktualisieren von Go

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxt shows how to count tokens with text input.
func countWithTxt(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What's the highest mountain in Africa?"},
		}},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 9
	// Cached: 0

	return nil
}

Node.js

Installieren

npm install @google/genai

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.countTokens({
    model: 'gemini-2.5-flash',
    contents: 'What is the highest mountain in Africa?',
  });

  console.log(response);

  return response.totalTokens;
}

Java

Informationen zum Installieren oder Aktualisieren von Java

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.HttpOptions;
import java.util.Optional;

public class CountTokensWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    countTokens(modelId);
  }

  // Counts tokens with text input
  public static Optional<Integer> countTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      CountTokensResponse response =
          client.models.countTokens(modelId, "What's the highest mountain in Africa?", null);

      System.out.print(response);
      // Example response:
      // CountTokensResponse{totalTokens=Optional[9], cachedContentTokenCount=Optional.empty}
      return response.totalTokens();
    }
  }
}

Tokenanzahl von Medien-Prompt abrufen

In diesem Beispiel werden die Token eines Prompts gezählt, der verschiedene Medientypen verwendet.

REST

Wenn Sie mithilfe der Vertex AI API die Tokenanzahl und die Anzahl der abrechenbaren Zeichen für einen Prompt abrufen möchten, senden Sie eine POST-Anfrage an den Publisher-Modellendpunkt.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll. Folgende Optionen sind verfügbar:

    Klicken Sie, um eine unvollständige Liste der verfügbaren Regionen einzublenden

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: .
  • MODEL_ID: die Modell-ID des multimodalen Modells, das Sie verwenden möchten.
  • ROLE: Die Rolle in einer Unterhaltung, die mit dem Inhalt verknüpft ist. Die Angabe einer Rolle ist auch bei Anwendungsfällen mit nur einem Schritt erforderlich. Unter anderem sind folgende Werte zulässig:
    • USER: Gibt Inhalte an, die von Ihnen gesendet werden
  • TEXT: Die Textanleitung, die in den Prompt eingefügt werden soll.
  • FILE_URI: Der URI oder die URL der Datei, die in den Prompt aufgenommen werden soll. Unter anderem sind folgende Werte zulässig:
    • Cloud Storage-Bucket-URI:Das Objekt muss entweder öffentlich lesbar sein oder sich im selben Google Cloud Projekt befinden, von dem die Anfrage gesendet wird. Für gemini-2.0-flash und gemini-2.0-flash-lite beträgt die Größenbeschränkung 2 GB.
    • HTTP-URL: Die Datei-URL muss öffentlich lesbar sein. Sie können eine Videodatei, eine Audiodatei und bis zu 10 Bilddateien pro Anfrage angeben. Audio- und Videodateien sowie Dokumente dürfen nicht größer als 15 MB sein.
    • YouTube-Video-URL:Das YouTube-Video muss entweder dem Konto gehören, mit dem Sie sich in der Google Cloud Console angemeldet haben, oder öffentlich sein. Pro Anfrage wird nur eine YouTube-Video-URL unterstützt.

    Wenn Sie einen fileURI angeben, müssen Sie auch den Medientyp (mimeType) der Datei angeben. Wenn VPC Service Controls aktiviert ist, wird die Angabe einer Media-Datei-URL für fileURI nicht unterstützt.

  • MIME_TYPE: Der Medientyp der Datei, die in den Feldern data oder fileUri angegeben wurde. Unter anderem sind folgende Werte zulässig:

    Zum Maximieren von MIME-Typen klicken

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

JSON-Text der Anfrage:

{
  "contents": [{
    "role": "ROLE",
    "parts": [
      {
        "file_data": {
          "file_uri": "FILE_URI",
          "mime_type": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT
      }
    ]
  }]
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

Python

Installieren

pip install --upgrade google-genai

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))

contents = [
    Part.from_uri(
        file_uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
        mime_type="video/mp4",
    ),
    "Provide a description of the video.",
]

response = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents=contents,
)
print(response)
# Example output:
# total_tokens=16252 cached_content_token_count=None

Go

Informationen zum Installieren oder Aktualisieren von Go

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxtAndVid shows how to count tokens with text and video inputs.
func countWithTxtAndVid(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Provide a description of the video."},
			{FileData: &genai.FileData{
				FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 16252
	// Cached: 0

	return nil
}

Node.js

Installieren

npm install @google/genai

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const video = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
      mimeType: 'video/mp4',
    },
  };

  const response = await ai.models.countTokens({
    model: 'gemini-2.5-flash',
    contents: [video, 'Provide a description of the video.'],
  });

  console.log(response);

  return response.totalTokens;
}

Java

Informationen zum Installieren oder Aktualisieren von Java

Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.util.List;
import java.util.Optional;

public class CountTokensWithTextAndVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    countTokens(modelId);
  }

  // Counts tokens with text and video inputs
  public static Optional<Integer> countTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      Content content =
          Content.fromParts(
              Part.fromText("Provide a description of this video"),
              Part.fromUri("gs://cloud-samples-data/generative-ai/video/pixel8.mp4", "video/mp4"));

      CountTokensResponse response = client.models.countTokens(modelId, List.of(content), null);

      System.out.print(response);
      // Example response:
      // CountTokensResponse{totalTokens=Optional[16707], cachedContentTokenCount=Optional.empty}
      return response.totalTokens();
    }
  }
}

Nächste Schritte