Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En este documento, se describe cómo crear un embedding de texto con la API de embedding de texto de Vertex AI.
La API de incorporaciones de texto de Vertex AI usa representaciones vectoriales densas: gemini-embedding-001, por ejemplo, usa vectores de 3,072 dimensiones. Los modelos de incorporación de vectores densos usan métodos de aprendizaje profundo similares a los que usan los modelos de lenguaje grandes. A diferencia de los vectores dispersos, que tienden a asignar palabras directamente a números, los vectores densos están diseñados para representar mejor el significado de un fragmento de texto. La ventaja de usar incorporaciones de vectores densas en la IA generativa es que, en lugar de buscar coincidencias de palabras o sintaxis directas, puedes buscar mejor pasajes que se alineen con el significado de la consulta, incluso si los fragmentos no usan el mismo idioma.
Los vectores están normalizados, por lo que puedes usar la similitud del coseno, el producto punto o la distancia euclidiana para proporcionar las mismas clasificaciones de similitud.
Para obtener más información sobre los modelos de incorporación de texto, consulta Embeddings de texto.
Para obtener información sobre qué idiomas admite cada modelo de incorporación, consulta Idiomas de texto compatibles.
Antes de comenzar
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
Puedes obtener incorporaciones de texto con los siguientes modelos:
Nombre del modelo
Descripción
Dimensiones de salida
Longitud de secuencia máxima
Lenguajes de texto admitidos
gemini-embedding-001
Rendimiento de vanguardia en tareas de inglés, multilingües y de código Unifica los modelos especializados anteriores, como text-embedding-005 y text-multilingual-embedding-002, y logra un mejor rendimiento en sus respectivos dominios. Para obtener más detalles, lee nuestro Informe técnico.
Para obtener una calidad de incorporación superior, gemini-embedding-001 es nuestro modelo grande diseñado para proporcionar el mayor rendimiento. Ten en cuenta que gemini-embedding-001 admite una instancia por solicitud.
Obtén incorporaciones de texto para un fragmento de texto
Puedes obtener incorporaciones de texto para un fragmento de texto mediante la API de Vertex AI o el SDK de Vertex AI para Python.
Límites de API
Para cada solicitud, tienes un límite de 250 textos de entrada.
La API tiene un límite máximo de tokens de entrada de 20,000.
Si se superan estos límites, se genera un error 400. Cada texto de entrada individual tiene un límite adicional de 2,048 tokens; cualquier exceso se trunca de forma silenciosa. También puedes inhabilitar el truncamiento silencioso configurando autoTruncate como false.
De forma predeterminada, todos los modelos producen un vector de embedding de longitud completa. Para gemini-embedding-001, este vector tiene 3,072 dimensiones, y otros modelos producen vectores de 768 dimensiones. Sin embargo, con el parámetro output_dimensionality, los usuarios pueden controlar el tamaño del vector de incorporación de salida.
Seleccionar una dimensionalidad de salida más pequeña puede ahorrar espacio de almacenamiento y aumentar la eficiencia computacional para las aplicaciones posteriores, sin sacrificar mucha calidad.
En los siguientes ejemplos, se usa el modelo gemini-embedding-001.
Establece variables de entorno para usar el SDK de IA generativa con Vertex AI:
# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values# with appropriate values for your project.exportGOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECTexportGOOGLE_CLOUD_LOCATION=globalexportGOOGLE_GENAI_USE_VERTEXAI=True
fromgoogleimportgenaifromgoogle.genai.typesimportEmbedContentConfigclient=genai.Client()response=client.models.embed_content(model="gemini-embedding-001",contents=["How do I get a driver's license/learner's permit?","How long is my driver's license valid for?","Driver's knowledge test study guide",],config=EmbedContentConfig(task_type="RETRIEVAL_DOCUMENT",# Optionaloutput_dimensionality=3072,# Optionaltitle="Driver's License",# Optional),)print(response)# Example response:# embeddings=[ContentEmbedding(values=[-0.06302902102470398, 0.00928034819662571, 0.014716853387653828, -0.028747491538524628, ... ],# statistics=ContentEmbeddingStatistics(truncated=False, token_count=13.0))]# metadata=EmbedContentMetadata(billable_character_count=112)
Agrega una incorporación a una base de datos vectorial
Después de generar tu incorporación, puedes agregar incorporaciones a una base de datos vectorial, como Vector Search. Esto permite una recuperación de latencia baja y es fundamental a medida que aumenta el tamaño de los datos.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[],[],null,["# Get text embeddings\n\nThis document describes how to create a text embedding using the\nVertex AI\n[Text embeddings API](/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api).\n\nVertex AI text embeddings API uses dense vector representations: [gemini-embedding-001](#supported-models),\nfor example, uses 3072-dimensional vectors. Dense vector embedding models use deep-learning methods similar to the ones used by large language models. Unlike sparse vectors, which tend to directly map words to numbers, dense vectors are designed to better represent the meaning of a piece of text. The benefit of using dense vector\nembeddings in generative AI is that instead of searching for direct word or\nsyntax matches, you can better search for passages that align to the meaning of\nthe query, even if the passages don't use the same language.\n\nThe vectors are normalized, so you can use cosine similarity, dot product, or\nEuclidean distance to provide the same similarity rankings.\n\n- To learn more about embeddings, see the [embeddings APIs overview](/vertex-ai/generative-ai/docs/embeddings).\n- To learn about text embedding models, see [Text embeddings](/vertex-ai/generative-ai/docs/model-reference/text-embeddings).\n- For information about which languages each embeddings model supports, see [Supported text languages](/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#supported_text_languages).\n\n| To see an example of getting text embeddings,\n| run the \"Getting Started with Text Embeddings + Vertex AI Vector Search\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/embeddings/intro-textemb-vectorsearch.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fgenerative-ai%2Fmain%2Fembeddings%2Fintro-textemb-vectorsearch.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fgenerative-ai%2Fmain%2Fembeddings%2Fintro-textemb-vectorsearch.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/embeddings/intro-textemb-vectorsearch.ipynb)\n\nBefore you begin\n----------------\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n\n\n Enable the Vertex AI API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n\n\n Enable the Vertex AI API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com)\n\n1. [Choose a task type](/vertex-ai/generative-ai/docs/embeddings/task-types) for your embeddings job.\n\n\u003cbr /\u003e\n\nSupported models\n----------------\n\nYou can get text embeddings by using the following models:\n\nFor superior embedding quality, `gemini-embedding-001` is our large\nmodel designed to provide the highest performance. Note that\n`gemini-embedding-001` supports one instance per request.\n| **Note:** Only use the models as listed in the supported models table. Don't specify a model without the `@version` suffix or `@latest`. These model names are not considered valid.\n\nGet text embeddings for a snippet of text\n-----------------------------------------\n\nYou can get text embeddings for a snippet of text by using the Vertex AI API or\nthe Vertex AI SDK for Python.\n\n### API limits\n\nFor each request, you're limited to 250 input texts.\nThe API has a maximum input token limit of 20,000.\nInputs exceeding this limit result in a 400 error. Each individual input text\nis further limited to 2048 tokens; any excess is silently truncated. You can\nalso disable silent truncation by setting `autoTruncate` to `false`.\n\nFor more information, see [Text embedding limits](/vertex-ai/docs/quotas#text-embedding-limits).\n\n### Choose an embedding dimension\n\nAll models produce a full-length embedding vector by default. For `gemini-embedding-001`,\nthis vector has 3072 dimensions, and other models produce 768-dimensional vectors. However, by\nusing the `output_dimensionality` parameter, users can control the size of the output embedding vector.\nSelecting a smaller output dimensionality can save storage space and\nincrease computational efficiency for downstream applications, while sacrificing\nlittle in terms of quality.\n\nThe following examples use the `gemini-embedding-001` model. \n\n### Python\n\n#### Install\n\n```\npip install --upgrade google-genai\n```\n\n\nTo learn more, see the\n[SDK reference documentation](https://googleapis.github.io/python-genai/).\n\n\nSet environment variables to use the Gen AI SDK with Vertex AI:\n\n```bash\n# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values\n# with appropriate values for your project.\nexport GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT\nexport GOOGLE_CLOUD_LOCATION=global\nexport GOOGLE_GENAI_USE_VERTEXAI=True\n```\n\n\u003cbr /\u003e\n\n from google import genai\n from google.genai.types import EmbedContentConfig\n\n client = genai.Client()\n response = client.models.embed_content(\n model=\"gemini-embedding-001\",\n contents=[\n \"How do I get a driver's license/learner's permit?\",\n \"How long is my driver's license valid for?\",\n \"Driver's knowledge test study guide\",\n ],\n config=EmbedContentConfig(\n task_type=\"RETRIEVAL_DOCUMENT\", # Optional\n output_dimensionality=3072, # Optional\n title=\"Driver's License\", # Optional\n ),\n )\n print(response)\n # Example response:\n # embeddings=[ContentEmbedding(values=[-0.06302902102470398, 0.00928034819662571, 0.014716853387653828, -0.028747491538524628, ... ],\n # statistics=ContentEmbeddingStatistics(truncated=False, token_count=13.0))]\n # metadata=EmbedContentMetadata(billable_character_count=112)\n\n\u003cbr /\u003e\n\nAdd an embedding to a vector database\n-------------------------------------\n\nAfter you've generated your embedding you can add embeddings to a vector\ndatabase, like Vector Search. This enables low-latency retrieval,\nand is critical as the size of your data increases.\n\nTo learn more about Vector Search,\nsee [Overview of Vector Search](/vertex-ai/docs/vector-search/overview).\n\nWhat's next\n-----------\n\n- To learn more about rate limits, see [Generative AI on Vertex AI rate limits](/vertex-ai/generative-ai/docs/quotas).\n- To get batch predictions for embeddings, see [Get batch text embeddings predictions](/vertex-ai/generative-ai/docs/embeddings/batch-prediction-genai-embeddings)\n- To learn more about multimodal embeddings, see [Get multimodal embeddings](/vertex-ai/generative-ai/docs/embeddings/get-multimodal-embeddings)\n- To tune an embedding, see [Tune text embeddings](/vertex-ai/generative-ai/docs/models/tune-embeddings)\n- To learn more about the research behind `text-embedding-005` and `text-multilingual-embedding-002`, see the research paper [Gecko: Versatile Text Embeddings Distilled from Large Language Models](https://arxiv.org/abs/2403.20327)."]]