Imágenes de VM de TPU

Cuando creas recursos TPU, debes pasar --version o --runtime-version que especifica una imagen de VM de TPU. Las imágenes de VM de TPU contienen el sistema operativo Ubuntu, Docker y otro software necesario para ejecutar tu código en TPU. En este documento, se proporciona orientación para seleccionar la imagen de VM de TPU adecuada en los siguientes casos: de crear Cloud TPU.

PyTorch y JAX

Usa las siguientes imágenes base de VM de TPU comunes para PyTorch y JAX y, luego, instálalas el framework que quieres usar.

  • tpu-ubuntu2204-base (predeterminado)
  • v2-alpha-tpuv5 (TPU v5p)
  • v2-alpha-tpuv5-lite (TPU v5e)

Consulta los documentos de inicio rápido de PyTorch/XLA y JAX para obtener las instrucciones de instalación.

TensorFlow

Hay imágenes de VM de TPU específicas para cada versión de TensorFlow. El las siguientes versiones de TensorFlow son compatibles con Cloud TPU:

  • 2.17.0
  • 2.16.2
  • 2.16.1
  • 2.15.1
  • 2.15.0
  • 2.14.1
  • 2.14.0
  • 2.13.1
  • 2.13.0
  • 2.12.1
  • 2.12.0
  • 2.11.1
  • 2.11.0
  • 2.10.1
  • 2.10.0
  • 2.9.3
  • 2.9.1
  • 2.8.4
  • 2.8.3
  • 2.8.0
  • 2.7.4
  • 2.7.3

Para obtener más información sobre las versiones de parches de TensorFlow, consulta Versiones de parches de TensorFlow compatibles.

Para las versiones 2.15.0 y posteriores de TensorFlow, hay variantes de imágenes de VM de TPU según la API del dispositivo (PJRT o ejecutor de transmisión) que uses.

Entrenamiento en v5p y v5e

TPU v5e y v5p son compatibles con TensorFlow 2.15.0 y versiones posteriores. Especifica la imagen de la VM de TPU con el formato tpu-vm-tf-x.y.z-{pod}-pjrt, en el que x es la versión principal de TensorFlow, y es la versión secundaria y z es la versión del parche de TensorFlow. Agrega pod después de la versión de TensorFlow si usas una TPU de hosts múltiples. Por ejemplo, si usas TensorFlow 2.16.0 en una TPU de varios hosts, usa la imagen de VM de TPU tpu-vm-tf-2.16.0-pod-pjrt. Para otras versiones de TensorFlow, reemplaza 2.16.0 por las versiones principales y de parches de TensorFlow que usas. Si usas una TPU de host único, omítelo.

Publicación en v5e

Existen imágenes de Docker de publicación que contienen todos los requisitos de software necesarios para la publicación con TensorFlow, PyTorch y JAX. Para obtener más información, consulta Introducción a la inferencia de Cloud TPU v5e.

TPU v4

Si usas TPU v4 y TensorFlow 2.15.0 o una versión posterior, sigue las Instrucciones de entrenamiento para v5p y v5e. Si utilizas TensorFlow 2.10.0 o versiones anteriores usa una imagen de VM de TPU específica de v4:

Versión de TensorFlow Versión de imagen de VM de TPU
2.10.0 tpu-vm-tf-2.10.0-v4
tpu-vm-tf-2.10.0-pod-v4
2.9.3 tpu-vm-tf-2.9.3-v4
tpu-vm-tf-2.9.3-pod-v4
2.9.2 tpu-vm-tf-2.9.2-v4
tpu-vm-tf-2.9.2-pod-v4
2.9.1 tpu-vm-tf-2.9.1-v4
tpu-vm-tf-2.9.1-pod-v4

TPU v2 y v3

Si usas TPU v2 o v3, usa la imagen de VM de TPU que coincida con la versión de TensorFlow que usas. Por ejemplo, si usas TensorFlow 2.14.1, usa la imagen de TPU tpu-vm-tf-2.14.1. Para otras versiones de TensorFlow, reemplaza 2.14.1 por la versión de TensorFlow que usas. Si usas un Pod de adjuntos de TPU de múltiples hosts al final de la TPU. por ejemplo, tpu-vm-tf-2.14.1-pod.

A partir de TensorFlow 2.15.0, también debes especificar una API de dispositivo como parte del nombre de la imagen. Por ejemplo, si usas TensorFlow 2.16.1 con la API de PJRT, usa la imagen de TPU tpu-vm-tf-2.16.1-pjrt. Si utilizas de la API del ejecutor de transmisiones con la misma versión de TensorFlow, usa el tpu-vm-tf-2.16.1-se imagen de TPU. Las versiones de TensorFlow anteriores a la 2.15.0 solo admiten el ejecutor de flujo.

Compatibilidad con PJRT de TensorFlow

A partir de TensorFlow 2.15.0, puedes usar la interfaz de PJRT para TensorFlow en TPU. PJRT cuenta con desfragmentación automática de la memoria del dispositivo y simplifica la integración de hardware con frameworks. Más información sobre PJRT, consulta PJRT: Simplificación de la integración del framework y del hardware del AA.

Accelerator Atributo Compatibilidad con PJRT Compatibilidad con el ejecutor de transmisiones
TPU v2 a v4 Procesamiento denso (sin API de incorporación de TPU)
TPU v2 a v4 API de procesamiento intensivo + API de incorporación de TPU No
TPU v2 a v4 tf.summary/tf.print con posición de dispositivo táctil No
TPU v5e Procesamiento denso (sin API de incorporación de TPU) No
TPU v5e API de TPU Embedding N/A No
TPU v5p Procesamiento denso (sin API de incorporación de TPU) No
TPU v5p API de incorporación de TPU No

Versiones de Libtpu

Las imágenes de TensorFlow de VMs de TPU contienen una versión específica de TensorFlow y la biblioteca libtpu correspondiente. Si creas tu propia imagen de VM, usa las siguientes versiones de software de TensorFlow TPU y las versiones correspondientes de libtpu:

Versión de TensorFlow Versión de libtpu.so
2.17.0 1.11.0
2.16.2 1.10.1
2.16.1 1.10.1
2.15.1 1.9.0
2.15.0 1.9.0
2.14.1 1.8.1
2.14.0 1.8.0
2.13.1 1.7.1
2.13.0 1.7.0
2.12.1 1.6.1
2.12.0 1.6.0
2.11.1 1.5.1
2.11.0 1.5.0
2.10.1 1.4.1
2.10.0 1.4.0
2.9.3 1.3.2
2.9.1 1.3.0
2.8.3 1.2.3
2.8.0 1.2.0
2.7.3 1.1.2

¿Qué sigue?

  • Obtén más información sobre la arquitectura de TPU en la sección Sistema Arquitectura.
  • Consulta Cuándo usar las TPU para obtener información sobre los tipos de modelos que funcionan con Cloud TPU.