Convierte un conjunto de datos de clasificación de imágenes para usarlo con Cloud TPU

En este instructivo, se describe cómo usar la secuencia de comandos de ejemplo del convertidor de datos de clasificación de imágenes para convertir un conjunto de datos de clasificación de imágenes sin procesar al formato TFRecord que se usa para entrenar modelos de Cloud TPU.

Los TFRecord hacen que la lectura de archivos grandes desde Cloud Storage sea más eficiente que leer cada imagen como un archivo individual. Puedes usar TFRecord en cualquier lugar en el que uses una canalización tf.data.Dataset.

Consulta los siguientes documentos de TensorFlow para obtener más información sobre el uso de TFRecord:

Si usas el framework de PyTorch o JAX y no usas Cloud Storage para el almacenamiento de tu conjunto de datos, es posible que no obtengas la misma ventaja de TFRecords.

Descripción general de conversiones

La carpeta de clasificación de imágenes dentro del repositorio del convertidor de datos en GitHub contiene la secuencia de comandos converter, image_classification_data.py y una implementación de muestra, simple_example.py, que puedes copiar y modificar para hacer tu propia conversión de datos.

En el ejemplo del convertidor de datos de clasificación de imágenes, se definen dos clases: ImageClassificationConfig y ImageClassificationBuilder. Estas clases se definen en tpu/tools/data_converter/image_classification_data.py.

ImageClassificationConfig es una clase base abstracta. Puedes subclasificar ImageClassificationConfig para definir la configuración necesaria y crear una instancia ImageClassificationBuilder

ImageClassificationBuilder es un compilador de conjuntos de datos de TensorFlow para conjuntos de datos de clasificación de imágenes. Es una subclase de tdfs.core.GeneratorBasedBuilder. Recupera ejemplos de datos de tu conjunto de datos y los convierte en TFRecords. Los TFRecords se escriben en una ruta de acceso especificada por el parámetro data_dir al método __init__ de ImageClassificationBuilder.

En simple_example.py, SimpleDatasetConfig subclasifica a ImageClassificationConfig, implementando propiedades que definen los modos admitidos, la cantidad de clases de imagen y un generador de ejemplos que produce un diccionario que contiene datos de imagen y una clase de imagen para cada ejemplo del conjunto de datos.

La función main() crea un conjunto de datos de imágenes generadas de forma aleatoria y crea una instancia de un objeto SimpleDatasetConfig que especifica la cantidad de clases y la ruta de acceso al conjunto de datos en el disco. A continuación, main() crea una instancia de ImageClassificationBuilder, pasa el objeto SimpleDatasetConfig instancia. Por último, main() llama a download_and_prepare(). Cuando se llama a este método, la instancia de ImageClassificationBuilder usa el generador de ejemplos de datos que implementa SimpleDatasetConfig para cargar cada ejemplo y guardarlos en una serie de archivos TFRecord.

Para obtener una explicación más detallada, consulta la Notebook del convertidor de clasificación.

Modifica la muestra de conversión de datos para cargar tu conjunto de datos

Para convertir tu conjunto de datos en formato TFRecord, crea una subclase de la La clase ImageClassificationConfig que define las siguientes propiedades:

  • num_labels: Muestra la cantidad de clases de imágenes.
  • supported_modes: Muestra una lista de modos compatibles con tu conjunto de datos (por ejemplo: probar, entrenar y validar)
  • text_label_map: Muestra un diccionario que modela la asignación entre una etiqueta de clase de texto y una de clase de número entero (SimpleDatasetConfig no usa esta propiedad porque no requiere una asignación).
  • ruta_descarga: la ruta de acceso desde la que se descarga tu conjunto de datos (SimpleDatasetConfig no usa esta propiedad, ya que example_generator carga los datos desde el disco).

Implementa la función de generación example_generator. Este método debe generar un diccionario que contiene los datos de la imagen y el nombre de la clase de imagen para cada ejemplo. ImageClassificationBuilder usa la función example_generator() para recuperar cada ejemplo y escribirlo en el disco en formato TFRecord.

Cómo ejecutar la muestra de conversión de datos

  1. Crea un bucket de Cloud Storage con el siguiente comando:

    gcloud storage buckets create gs://bucket-name --project=${PROJECT_ID} --location=us-central2
  2. Inicia una Cloud TPU con el comando gcloud.

    $ gcloud compute tpus tpu-vm create tpu-name \
        --zone=us-central2-b \
        --accelerator-type=v4-8 \
        --version=tpu-vm-tf-2.17.0-pjrt

    Descripciones de las marcas de comandos

    zone
    Es la zona en la que deseas crear la Cloud TPU.
    accelerator-type
    El tipo de acelerador especifica la versión y el tamaño de la Cloud TPU que deseas crear. Para obtener más información sobre los tipos de aceleradores compatibles con cada versión de TPU, consulta Versiones de TPU.
    version
    La versión de software de Cloud TPU.
  3. Conéctate a la TPU con SSH:

    $ gcloud compute tpus tpu-vm ssh tpu-name --zone=us-central2-b

    Cuando te conectas a la TPU, el indicador de shell cambia de username@projectname a username@vm-name.

  4. Instala los paquetes obligatorios.

    (vm)$ pip3 install opencv-python-headless pillow
  5. Crea las siguientes variables de entorno que usa la secuencia de comandos.

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    (vm)$ export CONVERTED_DIR=$HOME/tfrecords
    (vm)$ export GENERATED_DATA=$HOME/data
    (vm)$ export GCS_CONVERTED=$STORAGE_BUCKET/data_converter/image_classification/tfrecords
    (vm)$ export GCS_RAW=$STORAGE_BUCKET/image_classification/raw
    (vm)$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
  6. Cambia al directorio data_converter.

    (vm)$ cd /usr/share/tpu/tools/data_converter

Ejecuta el convertidor de datos en un conjunto de datos falso

La secuencia de comandos simple_example.py se encuentra en image_classification de la muestra del convertidor de datos. Ejecuta la secuencia de comandos con lo siguiente genera un conjunto de imágenes falsas y las convierte en TFRecords.

(vm)$ python3 image_classification/simple_example.py \
  --num_classes=1000 \
  --data_path=$GENERATED_DATA \
  --generate=True \
  --num_examples_per_class_low=10 \
  --num_examples_per_class_high=11 \
  --save_dir=$CONVERTED_DIR

Ejecuta el convertidor de datos en uno de nuestros conjuntos de datos sin procesar

  1. Crea una variable de entorno para la ubicación de los datos sin procesar.

    (vm)$ export GCS_RAW=gs://cloud-tpu-test-datasets/data_converter/raw_image_classification
  2. Ejecuta la secuencia de comandos simple_example.py:

    (vm)$ python3 image_classification/simple_example.py \
    --num_classes=1000 \
    --data_path=$GCS_RAW \
    --generate=False \
    --save_dir=$CONVERTED_DIR

La secuencia de comandos simple_example.py toma los siguientes parámetros:

  • num_classes se refiere a la cantidad de clases en el conjunto de datos. Aquí, usamos 1,000 para que coincida con el formato de ImageNet.
  • generate determina si se deben generar o no los datos sin procesar.
  • data_path se refiere a la ruta en la que se deben generar los datos si el valor es generate=True o la ruta en la que se almacenan los datos sin procesar si el valor es generate=False.
  • num_examples_per_class_low y num_examples_per_class_high determinan cuántos ejemplos por clase se deben generar. La secuencia de comandos genera un número al azar de ejemplos en este rango.
  • save_dir hace referencia a la ubicación en la que se guardan los TFRecords guardados. Con el fin de entrenar un modelo en Cloud TPU, los datos deben almacenarse en Cloud Storage. Puede ser en Cloud Storage o en la VM.

Cambia el nombre y mueve los TFRecords a Cloud Storage

En el siguiente ejemplo, se usan los datos convertidos con el modelo ResNet.

  1. Cambia el nombre de los TFRecords al mismo formato que los TFRecords de ImageNet:

    (vm)$ cd $CONVERTED_DIR/image_classification_builder/Simple/0.1.0/
    (vm)$ sudo apt install rename 
    (vm)$ rename -v 's/image_classification_builder-(\w+)\.tfrecord/$1/g' *
  2. Copia los TFRecords a Cloud Storage:

    (vm)$ gcloud storage cp train* $GCS_CONVERTED
    (vm)$ gcloud storage cp validation* $GCS_CONVERTED

Limpia

  1. Desconéctate de Cloud TPU, si aún no lo hiciste hazlo:

    (vm)$ exit

    El mensaje ahora debería mostrar user@projectname, que indica que estás en Cloud Shell.

  2. En Cloud Shell, ejecuta gcloud para borrar el recurso de VM.

    $ gcloud compute tpus tpu-vm delete tpu-name \
      --zone=us-central2-b
  3. Ejecuta gcloud compute tpus tpu-vm list para verificar que se haya borrado la VM. La eliminación puede tardar varios minutos. Una respuesta como la que se muestra a continuación indica que tus instancias se borraron de forma correcta.

    $ gcloud compute tpus tpu-vm list --zone=us-central2-b
    Listed 0 items.
    
  4. Ejecuta la CLI de gcloud como se muestra y reemplaza bucket-name por el nombre del bucket de Cloud Storage que creaste para este instructivo:

    $ gcloud storage rm gs://bucket-name --recursive