Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Utilisez un modèle Speech-to-Text personnalisé entraîné dans votre application de production ou dans des workflows d'analyse comparative. Dès que vous déployez votre modèle via un point de terminaison dédié, vous obtenez automatiquement un accès programmatique via un objet de reconnaissance, qui peut être utilisé directement via l'API Speech-to-Text V2 ou dans la Google Cloud console.
Avant de commencer
Assurez-vous d'avoir créé un compte Google Cloud , un projet, entraîné un modèle de reconnaissance vocale personnalisé et l'avoir déployé à l'aide d'un point de terminaison.
Effectuer une inférence dans la V2
Pour qu'un modèle Speech-to-Text personnalisé soit prêt à être utilisé, l'état du modèle dans l'onglet Modèles doit être Actif et le point de terminaison dédié dans l'onglet Points de terminaison doit être Déployé.
Dans notre exemple, où un ID de projet Google Cloud est custom-models-walkthrough, le point de terminaison correspondant au modèle Speech-to-Text personnalisé quantum-computing-lectures-custom-model est quantum-computing-lectures-custom-model-prod-endpoint. La région disponible est us-east1, et la requête de transcription par lot est la suivante :
fromgoogle.api_coreimportclient_optionsfromgoogle.cloud.speech_v2importSpeechClientfromgoogle.cloud.speech_v2.typesimportcloud_speechdefquickstart_v2(project_id:str,audio_file:str,)-> cloud_speech.RecognizeResponse:"""Transcribe an audio file."""# Instantiates a clientclient=SpeechClient(client_options=client_options.ClientOptions(api_endpoint="us-east1-speech.googleapis.com"))# Reads a file as byteswithopen(audio_file,"rb")asf:content=f.read()config=cloud_speech.RecognitionConfig(auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),language_codes=["en-US"],model="projects/custom-models-walkthrough/locations/us-east1/endpoints/quantum-computing-lectures-custom-model-prod-endpoint",)request=cloud_speech.RecognizeRequest(recognizer=f"projects/custom-models-walkthrough/locations/us-east1/recognizers/_",config=config,content=content,)# Transcribes the audio into textresponse=client.recognize(request=request)forresultinresponse.results:print(f"Transcript: {result.alternatives[0].transcript}")returnresponse
Étapes suivantes
Suivez les ressources pour tirer parti des modèles de reconnaissance vocale personnalisés dans votre application. Consultez Évaluer vos modèles personnalisés.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/04 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/04 (UTC)."],[],[],null,["# Use models\n\n| **Preview**\n|\n|\n| This feature is subject to the \"Pre-GA Offerings Terms\" in the General Service Terms section\n| of the [Service Specific Terms](/terms/service-terms#1).\n|\n| Pre-GA features are available \"as is\" and might have limited support.\n|\n| For more information, see the\n| [launch stage descriptions](/products#product-launch-stages).\n\nUse a trained Custom Speech-to-Text model in your production application or benchmarking workflows. As soon as you deploy your model through a dedicated endpoint, you automatically get programmatic access through a recognizer object, which can be used directly through the Speech-to-Text V2 API or in the Google Cloud console.\n\nBefore you begin\n----------------\n\nEnsure you have signed up for a Google Cloud account, created a project, trained a custom speech model, and deployed it using an endpoint.\n\nPerform inference in V2\n-----------------------\n\nFor a Custom Speech-to-Text model to be ready for use, the state of the model in the **Models** tab should be **Active** , and the dedicated endpoint in the **Endpoints** tab must be **Deployed**.\n\nIn our example, where a Google Cloud project ID is `custom-models-walkthrough`, the endpoint that corresponds to the Custom Speech-to-Text model `quantum-computing-lectures-custom-model` is `quantum-computing-lectures-custom-model-prod-endpoint`. The region that it's available is `us-east1`, and the batch transcription request is the following: \n\n from google.api_core import client_options\n from google.cloud.speech_v2 import SpeechClient\n from google.cloud.speech_v2.types import cloud_speech\n\n def quickstart_v2(\n project_id: str,\n audio_file: str,\n ) -\u003e cloud_speech.RecognizeResponse:\n \"\"\"Transcribe an audio file.\"\"\"\n # Instantiates a client\n client = SpeechClient(\n client_options=client_options.ClientOptions(\n api_endpoint=\"us-east1-speech.googleapis.com\"\n )\n )\n\n # Reads a file as bytes\n with open(audio_file, \"rb\") as f:\n content = f.read()\n\n config = cloud_speech.RecognitionConfig(\n auto_decoding_config=cloud_speech.https://cloud.google.com/python/docs/reference/speech/latest/google.cloud.speech_v2.types.AutoDetectDecodingConfig.html(),\n language_codes=[\"en-US\"],\n model=\"projects/custom-models-walkthrough/locations/us-east1/endpoints/quantum-computing-lectures-custom-model-prod-endpoint\",\n )\n request = cloud_speech.RecognizeRequest(\n recognizer=f\"projects/custom-models-walkthrough/locations/us-east1/recognizers/_\",\n config=config,\n content=content,\n )\n\n # Transcribes the audio into text\n response = client.https://cloud.google.com/python/docs/reference/speech/latest/google.cloud.speech_v1.services.speech.SpeechClient.html#google_cloud_speech_v1_services_speech_SpeechClient_recognize(request=request)\n\n for result in response.results:\n print(f\"Transcript: {result.alternatives[0].transcript}\")\n\n return response\n\n| **Note:** If you try to create a recognizer object in a different region than the one that the endpoint is created in, the request will fail.\n\nWhat's next\n-----------\n\nFollow the resources to take advantage of custom speech models in your application. See [Evaluate your custom models](/speech-to-text/v2/docs/custom-speech-models/evaluate-model)."]]