Envía una solicitud de reconocimiento con adaptación de voz

Puedes mejorar la exactitud de los resultados de la transcripción que obtienes de Speech-to-Text mediante la adaptación de voz. La función de adaptación de voz te permite especificar palabras o frases que STT debe reconocer con mayor frecuencia en los datos de audio que otras alternativas que, de otro modo, se podrían sugerir de otra manera. La adaptación de voz es particularmente útil para mejorar la exactitud de la transcripción en los siguientes casos:

  1. Tu audio contiene palabras o frases que suelen aparecer con mucha frecuencia.
  2. Es probable que tu audio contenga palabras poco comunes, como nombres propios, o palabras que no existen en general.
  3. Tu audio contiene ruido o no está muy claro.

Consulta la página de conceptos de adaptación de voz para obtener información sobre las prácticas recomendadas de la adaptación de voz y la mejora de la adaptación de voz.

En la siguiente muestra de código, se indica cómo mejorar la exactitud de la transcripción a través de la configuración de contextos de voz en una solicitud enviada a la API de Speech-to-Text. Si deseas obtener una lista de las clases disponibles para tu idioma, consulta la página Tokens de clase admitidos.

LÍNEA DE CMD Y REST

Consulta el extremo de la API de speech:recognize para obtener más detalles.

Antes de usar cualquiera de los datos de solicitud siguientes, realiza los siguientes reemplazos:

  • language-code: Es el código BCP-47 del idioma que se habla en el clip de audio.
  • phrases-to-boost: Es la frase o las frases que deseas que Speech-to-Text priorice, como un arreglo de strings.
  • storage-bucket: Es un depósito de Cloud Storage.
  • input-audio: Son los datos de audio que deseas transcribir.

Método HTTP y URL:

POST https://speech.googleapis.com/v1p1beta1/speech:recognize

Cuerpo JSON de la solicitud:

{
  "config":{
      "languageCode":"language-code",
      "speechContexts":[{
          "phrases":[phrases-to-boost],
          "boost": 2
      }]
  },
  "audio":{
    "uri":"gs:storage-bucket/input-file"
  }
}

Para enviar tu solicitud, expande una de estas opciones:

Deberías recibir una respuesta JSON similar a la que se muestra a continuación:

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "When deciding whether to bring an umbrella, I consider the weather",
          "confidence": 0.9463943
        }
      ],
      "languageCode": "en-us"
    }
  ]
}

Java

import com.google.cloud.speech.v1.RecognitionAudio;
import com.google.cloud.speech.v1.RecognitionConfig;
import com.google.cloud.speech.v1.RecognizeRequest;
import com.google.cloud.speech.v1.RecognizeResponse;
import com.google.cloud.speech.v1.SpeechClient;
import com.google.cloud.speech.v1.SpeechContext;
import com.google.cloud.speech.v1.SpeechRecognitionAlternative;
import com.google.cloud.speech.v1.SpeechRecognitionResult;
import java.io.IOException;

class TranscribeContextClasses {

  void transcribeContextClasses() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String storageUri = "gs://YOUR_BUCKET_ID/path/to/your/file.wav";
    transcribeContextClasses(storageUri);
  }

  // Provides "hints" to the speech recognizer to favor specific classes of words in the results.
  static void transcribeContextClasses(String storageUri) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (SpeechClient speechClient = SpeechClient.create()) {
      // SpeechContext: to configure your speech_context see:
      // https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#speechcontext
      // Full list of supported phrases (class tokens) here:
      // https://cloud.google.com/speech-to-text/docs/class-tokens
      SpeechContext speechContext = SpeechContext.newBuilder().addPhrases("$TIME").build();

      // RecognitionConfig: to configure your encoding and sample_rate_hertz, see:
      // https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#recognitionconfig
      RecognitionConfig config =
          RecognitionConfig.newBuilder()
              .setEncoding(RecognitionConfig.AudioEncoding.LINEAR16)
              .setSampleRateHertz(8000)
              .setLanguageCode("en-US")
              .addSpeechContexts(speechContext)
              .build();

      // Set the path to your audio file
      RecognitionAudio audio = RecognitionAudio.newBuilder().setUri(storageUri).build();

      // Build the request
      RecognizeRequest request =
          RecognizeRequest.newBuilder().setConfig(config).setAudio(audio).build();

      // Perform the request
      RecognizeResponse response = speechClient.recognize(request);

      for (SpeechRecognitionResult result : response.getResultsList()) {
        // First alternative is the most probable result
        SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
        System.out.printf("Transcript: %s\n", alternative.getTranscript());
      }
    }
  }
}

Node.js

// Provides "hints" to the speech recognizer to favor
// specific classes of words in the results.

// Imports the Google Cloud client library
const speech = require('@google-cloud/speech');

// Creates a client
const client = new speech.SpeechClient();

async function transcribeContextClasses() {
  // storageUri = 'gs://YOUR_BUCKET_ID/path/to/your/file.wav'
  const audio = {
    uri: storageUri,
  };

  // SpeechContext: to configure your speech_context see:
  // https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#speechcontext
  // Full list of supported phrases(class tokens) here:
  // https://cloud.google.com/speech-to-text/docs/class-tokens
  const speechContext = {
    phrases: ['$TIME'],
  };

  // RecognitionConfig: to configure your encoding and sample_rate_hertz, see:
  // https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#recognitionconfig
  const config = {
    encoding: 'LINEAR16',
    sampleRateHertz: 8000,
    languageCode: 'en-US',
    speechContexts: [speechContext],
  };

  const request = {
    config: config,
    audio: audio,
  };

  // Detects speech in the audio file.
  const [response] = await client.recognize(request);
  response.results.forEach((result, index) => {
    const transcript = result.alternatives[0].transcript;
    console.log('-'.repeat(20));
    console.log(`First alternative of result ${index}`);
    console.log(`Transcript: ${transcript}`);
  });
}

transcribeContextClasses();

Python

from google.cloud import speech

client = speech.SpeechClient()

# storage_uri = 'gs://YOUR_BUCKET_ID/path/to/your/file.wav'
audio = speech.RecognitionAudio(uri=storage_uri)

# SpeechContext: to configure your speech_context see:
# https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#speechcontext
# Full list of supported phrases (class tokens) here:
# https://cloud.google.com/speech-to-text/docs/class-tokens
speech_context = speech.SpeechContext(phrases=['$TIME'])

# RecognitionConfig: to configure your encoding and sample_rate_hertz, see:
# https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#recognitionconfig
config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=8000,
    language_code="en-US",
    speech_contexts=[speech_context],
)

response = client.recognize(config=config, audio=audio)

for i, result in enumerate(response.results):
    alternative = result.alternatives[0]
    print("-" * 20)
    print("First alternative of result {}".format(i))
    print("Transcript: {}".format(alternative.transcript))

Go


import (
	"context"
	"fmt"
	"io"
	"strings"

	speech "cloud.google.com/go/speech/apiv1"
	speechpb "google.golang.org/genproto/googleapis/cloud/speech/v1"
)

// contextClasses provides "hints" to the speech recognizer
// to favour specific classes of words in the results.
func contextClasses(w io.Writer, gcsURI string) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	// SpeechContext: to configure your speech_context see:
	// https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#speechcontext
	// Full list of supported phrases (class tokens) here:
	// https://cloud.google.com/speech-to-text/docs/class-tokens
	// In this instance, the use of "$TIME" favours time of day detections.
	speechContext := &speechpb.SpeechContext{Phrases: []string{"$TIME"}}

	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 8000,
			LanguageCode:    "en-US",
			SpeechContexts:  []*speechpb.SpeechContext{speechContext},
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Uri{Uri: gcsURI},
		},
	})
	if err != nil {
		return fmt.Errorf("Recognize: %v", err)
	}

	// Print the results.
	for i, result := range resp.Results {
		fmt.Fprintf(w, "%s\n", strings.Repeat("-", 20))
		fmt.Fprintf(w, "Result %d\n", i+1)
		for j, alternative := range result.Alternatives {
			fmt.Fprintf(w, "Alternative %d: %s\n", j+1, alternative.Transcript)
		}
	}
	return nil
}