- 0.55.0 (latest)
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::SupervisedHyperParameters.
Hyperparameters for SFT.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#adapter_size
def adapter_size() -> ::Google::Cloud::AIPlatform::V1::SupervisedHyperParameters::AdapterSize
Returns
- (::Google::Cloud::AIPlatform::V1::SupervisedHyperParameters::AdapterSize) — Optional. Adapter size for tuning.
#adapter_size=
def adapter_size=(value) -> ::Google::Cloud::AIPlatform::V1::SupervisedHyperParameters::AdapterSize
Parameter
- value (::Google::Cloud::AIPlatform::V1::SupervisedHyperParameters::AdapterSize) — Optional. Adapter size for tuning.
Returns
- (::Google::Cloud::AIPlatform::V1::SupervisedHyperParameters::AdapterSize) — Optional. Adapter size for tuning.
#epoch_count
def epoch_count() -> ::Integer
Returns
- (::Integer) — Optional. Number of complete passes the model makes over the entire training dataset during training.
#epoch_count=
def epoch_count=(value) -> ::Integer
Parameter
- value (::Integer) — Optional. Number of complete passes the model makes over the entire training dataset during training.
Returns
- (::Integer) — Optional. Number of complete passes the model makes over the entire training dataset during training.
#learning_rate_multiplier
def learning_rate_multiplier() -> ::Float
Returns
- (::Float) — Optional. Multiplier for adjusting the default learning rate.
#learning_rate_multiplier=
def learning_rate_multiplier=(value) -> ::Float
Parameter
- value (::Float) — Optional. Multiplier for adjusting the default learning rate.
Returns
- (::Float) — Optional. Multiplier for adjusting the default learning rate.