Vertex AI SDK

The vertexai module.

vertexai.init(*, project: Optional[str] = None, location: Optional[str] = None, experiment: Optional[str] = None, experiment_description: Optional[str] = None, experiment_tensorboard: Optional[Union[str, google.cloud.aiplatform.tensorboard.tensorboard_resource.Tensorboard, bool]] = None, staging_bucket: Optional[str] = None, credentials: Optional[google.auth.credentials.Credentials] = None, encryption_spec_key_name: Optional[str] = None, network: Optional[str] = None, service_account: Optional[str] = None, api_endpoint: Optional[str] = None)

Updates common initialization parameters with provided options.

  • Parameters

    • project (str) – The default project to use when making API calls.

    • location (str) – The default location to use when making API calls. If not set defaults to us-central-1.

    • experiment (str) – Optional. The experiment name.

    • experiment_description (str) – Optional. The description of the experiment.

    • experiment_tensorboard (Union[str, *[tensorboard_resource.Tensorboard](../aiplatform/services.md#google.cloud.aiplatform.Tensorboard), [bool](https://python.readthedocs.io/en/latest/library/functions.html#bool)]*) – Optional. The Vertex AI TensorBoard instance, Tensorboard resource name, or Tensorboard resource ID to use as a backing Tensorboard for the provided experiment.

      Example tensorboard resource name format: “projects/123/locations/us-central1/tensorboards/456”

      If experiment_tensorboard is provided and experiment is not, the provided experiment_tensorboard will be set as the global Tensorboard. Any subsequent calls to aiplatform.init() with experiment and without experiment_tensorboard will automatically assign the global Tensorboard to the experiment.

      If experiment_tensorboard is ommitted or set to True or None the global Tensorboard will be assigned to the experiment. If a global Tensorboard is not set, the default Tensorboard instance will be used, and created if it does not exist.

      To disable creating and using Tensorboard with experiment, set experiment_tensorboard to False. Any subsequent calls to aiplatform.init() should include this setting as well.

    • staging_bucket (str) – The default staging bucket to use to stage artifacts when making API calls. In the form gs://…

    • credentials (google.auth.credentials.Credentials) – The default custom credentials to use when making API calls. If not provided credentials will be ascertained from the environment.

    • encryption_spec_key_name (Optional[str]) – Optional. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.

      If set, this resource and all sub-resources will be secured by this key.

    • network (str) – Optional. The full name of the Compute Engine network to which jobs and resources should be peered. E.g. “projects/12345/global/networks/myVPC”. Private services access must already be configured for the network. If specified, all eligible jobs and resources created will be peered with this VPC.

    • service_account (str) – Optional. The service account used to launch jobs and deploy models. Jobs that use service_account: BatchPredictionJob, CustomJob, PipelineJob, HyperparameterTuningJob, CustomTrainingJob, CustomPythonPackageTrainingJob, CustomContainerTrainingJob, ModelEvaluationJob.

    • api_endpoint (str) – Optional. The desired API endpoint, e.g., us-central1-aiplatform.googleapis.com

  • Raises

    ValueError – If experiment_description is provided but experiment is not.

Classes for working with the Gemini models.

class vertexai.preview.generative_models.Candidate()

Bases: object

A response candidate generated by the model.

class vertexai.preview.generative_models.ChatSession(model: vertexai.generative_models._generative_models._GenerativeModel, *, history: Optional[List[vertexai.generative_models._generative_models.Content]] = None, raise_on_blocked: bool = True)

Bases: object

Chat session holds the chat history.

send_message(content: Union[str, vertexai.generative_models.generative_models.Image, vertexai.generative_models._generative_models.Part, List[Union[str, vertexai.generative_models._generative_models.Image, vertexai.generative_models._generative_models.Part]]], *, generation_config: Optional[Union[vertexai.generative_models._generative_models.GenerationConfig, Dict[str, Any]]] = None, safety_settings: Optional[Union[List[[google.cloud.aiplatform_v1beta1.types.content.SafetySetting](../aiplatform_v1beta1/types.md#google.cloud.aiplatform_v1beta1.types.SafetySetting)], Dict[google.cloud.aiplatform_v1beta1.types.content.HarmCategory, google.cloud.aiplatform_v1beta1.types.content.SafetySetting.HarmBlockThreshold]]] = None, tools: Optional[List[vertexai.generative_models._generative_models.Tool]] = None, stream: bool = False)

Generates content.

  • Parameters

    • content – Content to send to the model. Supports a value that can be converted to a Part or a list of such values. Supports * str, Image, Part, * List[Union[str, Image, Part]],

    • generation_config – Parameters for the generation.

    • safety_settings – Safety settings as a mapping from HarmCategory to HarmBlockThreshold.

    • tools – A list of tools (functions) that the model can try calling.

    • stream – Whether to stream the response.

  • Returns

    A single GenerationResponse object if stream == False A stream of GenerationResponse objects if stream == True

  • Raises

    ResponseBlockedError – If the response was blocked.

send_message_async(content: Union[str, vertexai.generative_models.generative_models.Image, vertexai.generative_models._generative_models.Part, List[Union[str, vertexai.generative_models._generative_models.Image, vertexai.generative_models._generative_models.Part]]], *, generation_config: Optional[Union[vertexai.generative_models._generative_models.GenerationConfig, Dict[str, Any]]] = None, safety_settings: Optional[Union[List[[google.cloud.aiplatform_v1beta1.types.content.SafetySetting](../aiplatform_v1beta1/types.md#google.cloud.aiplatform_v1beta1.types.SafetySetting)], Dict[google.cloud.aiplatform_v1beta1.types.content.HarmCategory, google.cloud.aiplatform_v1beta1.types.content.SafetySetting.HarmBlockThreshold]]] = None, tools: Optional[List[vertexai.generative_models._generative_models.Tool]] = None, stream: bool = False)

Generates content asynchronously.

  • Parameters

    • content – Content to send to the model. Supports a value that can be converted to a Part or a list of such values. Supports * str, Image, Part, * List[Union[str, Image, Part]],

    • generation_config – Parameters for the generation.

    • safety_settings – Safety settings as a mapping from HarmCategory to HarmBlockThreshold.

    • tools – A list of tools (functions) that the model can try calling.

    • stream – Whether to stream the response.

  • Returns

    An awaitable for a single GenerationResponse object if stream == False An awaitable for a stream of GenerationResponse objects if stream == True

  • Raises

    ResponseBlockedError – If the response was blocked.

class vertexai.preview.generative_models.Content(*, parts: Optional[List[vertexai.generative_models._generative_models.Part]] = None, role: Optional[str] = None)

Bases: object

The multi-part content of a message.

Usage:

```python
``
```

\`
response = model.generate_content(contents=[

> Content(role=”user”, parts=[Part.from_text(“Why is sky blue?”)])

class vertexai.preview.generative_models.FinishReason(value)

Bases: proto.enums.Enum

The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.

Values:

FINISH_REASON_UNSPECIFIED (0):

    The finish reason is unspecified.

STOP (1):

    Natural stop point of the model or provided
    stop sequence.

MAX_TOKENS (2):

    The maximum number of tokens as specified in
    the request was reached.

SAFETY (3):

    The token generation was stopped as the
    response was flagged for safety reasons. NOTE:
    When streaming the Candidate.content will be
    empty if content filters blocked the output.

RECITATION (4):

    The token generation was stopped as the
    response was flagged for unauthorized citations.

OTHER (5):

    All other reasons that stopped the token
    generation

class vertexai.preview.generative_models.FunctionDeclaration(*, name: str, parameters: Dict[str, Any], description: Optional[str] = None)

Bases: object

A representation of a function declaration.

Usage:

Create function declaration and tool:


```python
``
```

\`
get_current_weather_func = generative_models.FunctionDeclaration(

> name=”get_current_weather”,
> description=”Get the current weather in a given location”,
> parameters={

> > “type”: “object”,
> > “properties”: {

> > > “location”: {

> > >     “type”: “string”,
> > >     “description”: “The city and state, e.g. San Francisco, CA”

> > > },
> > > “unit”: {

> > > > “type”: “string”,
> > > > “enum”: [

> > > > > “celsius”,
> > > > > “fahrenheit”,

> > > > ]

> > > }

> > },
> > “required”: [

> > > “location”

> > ]

> },

)
weather_tool = generative_models.Tool(

> function_declarations=[get_current_weather_func],

Use tool in GenerativeModel.generate_content:


```python
``
```

\`
model = GenerativeModel(“gemini-pro”)
print(model.generate_content(

> “What is the weather like in Boston?”,
> # You can specify tools when creating a model to avoid having to send them with every request.
> tools=[weather_tool],

Use tool in chat:


```python
``
```

\`
fc_model = GenerativeModel(

> “gemini-pro”,
> # You can specify tools when creating a model to avoid having to send them with every request.
> tools=[weather_tool],

)
fc_chat = model.start_chat()
print(fc_chat.send_message(“What is the weather like in Boston?”))
print(fc_chat.send_message(

> Part.from_function_response(

>     name=”get_current_weather”,
>     response={

>     > “content”: {“weather_there”: “super nice”},

>     }

> ),

Constructs a FunctionDeclaration.

  • Parameters

    • name – The name of the function that the model can call.

    • parameters – Describes the parameters to this function in JSON Schema Object format.

    • description – Description and purpose of the function. Model uses it to decide how and whether to call the function.

class vertexai.preview.generative_models.GenerationConfig(*, temperature: Optional[float] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, candidate_count: Optional[int] = None, max_output_tokens: Optional[int] = None, stop_sequences: Optional[List[str]] = None)

Bases: object

Parameters for the generation.

Constructs a GenerationConfig object.

  • Parameters

    • temperature – Controls the randomness of predictions. Range: [0.0, 1.0]

    • top_p – If specified, nucleus sampling will be used. Range: (0.0, 1.0]

    • top_k – If specified, top-k sampling will be used.

    • candidate_count – Number of candidates to generate.

    • max_output_tokens – The maximum number of output tokens to generate per message.

    • stop_sequences – A list of stop sequences.

Usage:

```python
``
```

\`
response = model.generate_content(

> “Why is sky blue?”,
> generation_config=GenerationConfig(

> > temperature=0.1,
> > top_p=0.95,
> > top_k=20,
> > candidate_count=1,
> > max_output_tokens=100,
> > stop_sequences=[”nnn”],

> )

class vertexai.preview.generative_models.GenerationResponse()

Bases: object

The response from the model.

vertexai.preview.generative_models.GenerativeModel()

alias of vertexai.preview.generative_models._PreviewGenerativeModel

class vertexai.preview.generative_models.HarmBlockThreshold(value)

Bases: proto.enums.Enum

Probability based thresholds levels for blocking.

Values:

HARM_BLOCK_THRESHOLD_UNSPECIFIED (0):

    Unspecified harm block threshold.

BLOCK_LOW_AND_ABOVE (1):

    Block low threshold and above (i.e. block
    more).

BLOCK_MEDIUM_AND_ABOVE (2):

    Block medium threshold and above.

BLOCK_ONLY_HIGH (3):

    Block only high threshold (i.e. block less).

BLOCK_NONE (4):

    Block none.

class vertexai.preview.generative_models.HarmCategory(value)

Bases: proto.enums.Enum

Harm categories that will block the content.

Values:

HARM_CATEGORY_UNSPECIFIED (0):

    The harm category is unspecified.

HARM_CATEGORY_HATE_SPEECH (1):

    The harm category is hate speech.

HARM_CATEGORY_DANGEROUS_CONTENT (2):

    The harm category is dangerous content.

HARM_CATEGORY_HARASSMENT (3):

    The harm category is harassment.

HARM_CATEGORY_SEXUALLY_EXPLICIT (4):

    The harm category is sexually explicit
    content.

class vertexai.preview.generative_models.Image()

Bases: object

The image that can be sent to a generative model.

property data(: [bytes](https://python.readthedocs.io/en/latest/library/stdtypes.html#bytes )

Returns the image data.

static from_bytes(data: bytes)

Loads image from image bytes.

  • Parameters

    data – Image bytes.

  • Returns

    Loaded image as an Image object.

static load_from_file(location: str)

Loads image from file.

  • Parameters

    location – Local path from where to load the image.

  • Returns

    Loaded image as an Image object.

class vertexai.preview.generative_models.Part()

Bases: object

A part of a multi-part Content message.

Usage:

```python
``
```

\`
text_part = Part.from_text(“Why is sky blue?”)
image_part = Part.from_image(Image.load_from_file(“image.jpg”))
video_part = Part.from_uri(uri=”gs://…/video.mp4”, mime_type=”video/mp4”)
function_response_part = Part.from_function_response(

> name=”get_current_weather”,
> response={

> > “content”: {“weather_there”: “super nice”},

> }

)

response1 = model.generate_content([text_part, image_part])
response2 = model.generate_content(video_part)
response3 = chat.send_message(function_response_part)


```python
``
```



```python
`
```

exception vertexai.preview.generative_models.ResponseBlockedError(message: str, request_contents: List[vertexai.generative_models._generative_models.Content], responses: List[vertexai.generative_models._generative_models.GenerationResponse])

Bases: Exception

with_traceback()

Exception.with_traceback(tb) – set self.traceback to tb and return self.

class vertexai.preview.generative_models.Tool(function_declarations: List[vertexai.generative_models._generative_models.FunctionDeclaration])

Bases: object

A collection of functions that the model may use to generate response.

Usage:

Create tool from function declarations:


```python
``
```

\`
get_current_weather_func = generative_models.FunctionDeclaration(…)
weather_tool = generative_models.Tool(

> function_declarations=[get_current_weather_func],

Use tool in GenerativeModel.generate_content:


```python
``
```

\`
model = GenerativeModel(“gemini-pro”)
print(model.generate_content(

> “What is the weather like in Boston?”,
> # You can specify tools when creating a model to avoid having to send them with every request.
> tools=[weather_tool],

Use tool in chat:


```python
``
```

\`
fc_model = GenerativeModel(

> “gemini-pro”,
> # You can specify tools when creating a model to avoid having to send them with every request.
> tools=[weather_tool],

)
fc_chat = fc_model.start_chat()
print(fc_chat.send_message(“What is the weather like in Boston?”))
print(fc_chat.send_message(

> Part.from_function_response(

>     name=”get_current_weather”,
>     response={

>     > “content”: {“weather_there”: “super nice”},

>     }

> ),

Classes for working with language models.

class vertexai.language_models.ChatMessage(content: str, author: str)

Bases: object

A chat message.

content()

Content of the message.

author()

Author of the message.

class vertexai.language_models.ChatModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai.language_models._language_models._ChatModelBase, vertexai.language_models._language_models._TunableChatModelMixin

ChatModel represents a language model that is capable of chat.

Examples:

chat_model = ChatModel.from_pretrained("chat-bison@001")

chat = chat_model.start_chat(
    context="My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.",
    examples=[
        InputOutputTextPair(
            input_text="Who do you work for?",
            output_text="I work for Ned.",
        ),
        InputOutputTextPair(
            input_text="What do I like?",
            output_text="Ned likes watching movies.",
        ),
    ],
    temperature=0.3,
)

chat.send_message("Do you know any cool events this weekend?")

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Vertex LLM. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

classmethod get_tuned_model(tuned_model_name: str)

Loads the specified tuned language model.

list_tuned_model_names()

Lists the names of tuned models.

  • Returns

    A list of tuned models that can be used with the get_tuned_model method.

start_chat(*, context: Optional[str] = None, examples: Optional[List[vertexai.language_models.InputOutputTextPair]] = None, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, message_history: Optional[List[vertexai.language_models.ChatMessage]] = None, stop_sequences: Optional[List[str]] = None)

Starts a chat session with the model.

  • Parameters

    • context – Context shapes how the model responds throughout the conversation. For example, you can use context to specify words the model can or cannot use, topics to focus on or avoid, or the response format or style

    • examples – List of structured messages to the model to learn how to respond to the conversation. A list of InputOutputTextPair objects.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024].

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95.

    • message_history – A list of previously sent and received messages.

    • stop_sequences – Customized stop sequences to stop the decoding process.

  • Returns

    A ChatSession object.

tune_model(training_data: Union[str, pandas.core.frame.DataFrame], *, train_steps: Optional[int] = None, learning_rate_multiplier: Optional[float] = None, tuning_job_location: Optional[str] = None, tuned_model_location: Optional[str] = None, model_display_name: Optional[str] = None, default_context: Optional[str] = None, accelerator_type: Optional[Literal['TPU', 'GPU']] = None, tuning_evaluation_spec: Optional[TuningEvaluationSpec] = None)

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage: \ tuning_job = model.tune_model(...) ... do some other work tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete ``

  • Parameters

    • training_data – A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

    • train_steps – Number of training batches to tune on (batch size is 8 samples).

    • learning_rate – Deprecated. Use learning_rate_multiplier instead. Learning rate to use in tuning.

    • learning_rate_multiplier – Learning rate multiplier to use in tuning.

    • tuning_job_location – GCP location where the tuning job should be run.

    • tuned_model_location – GCP location where the tuned model should be deployed.

    • model_display_name – Custom display name for the tuned model.

    • default_context – The context to use for all training samples by default.

    • accelerator_type – Type of accelerator to use. Can be “TPU” or “GPU”.

    • tuning_evaluation_spec – Specification for the model evaluation during tuning.

  • Returns

    A LanguageModelTuningJob object that represents the tuning job. Calling job.result() blocks until the tuning is complete and returns a LanguageModel object.

  • Raises

    • ValueError – If the “tuning_job_location” value is not supported

    • ValueError – If the “tuned_model_location” value is not supported

    • RuntimeError – If the model does not support tuning

    • AttributeError – If any attribute in the “tuning_evaluation_spec” is not supported

class vertexai.language_models.ChatSession(model: vertexai.language_models.ChatModel, context: Optional[str] = None, examples: Optional[List[vertexai.language_models.InputOutputTextPair]] = None, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, message_history: Optional[List[vertexai.language_models.ChatMessage]] = None, stop_sequences: Optional[List[str]] = None)

Bases: vertexai.language_models._language_models._ChatSessionBase

ChatSession represents a chat session with a language model.

Within a chat session, the model keeps context and remembers the previous conversation.

property message_history(: List[vertexai.language_models.ChatMessage )

List of previous messages.

send_message(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None, candidate_count: Optional[int] = None, grounding_source: Optional[Union[vertexai.language_models._language_models.WebSearch, vertexai.language_models._language_models.VertexAISearch]] = None)

Sends message to the language model and gets a response.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024]. Uses the value specified when calling ChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0. Uses the value specified when calling ChatModel.start_chat by default.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40. Uses the value specified when calling ChatModel.start_chat by default.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95. Uses the value specified when calling ChatModel.start_chat by default.

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • candidate_count – Number of candidates to return.

    • grounding_source – If specified, grounding feature will be enabled using the grounding source. Default: None.

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

async send_message_async(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None, candidate_count: Optional[int] = None, grounding_source: Optional[Union[vertexai.language_models._language_models.WebSearch, vertexai.language_models._language_models.VertexAISearch]] = None)

Asynchronously sends message to the language model and gets a response.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024]. Uses the value specified when calling ChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0. Uses the value specified when calling ChatModel.start_chat by default.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40. Uses the value specified when calling ChatModel.start_chat by default.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95. Uses the value specified when calling ChatModel.start_chat by default.

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • candidate_count – Number of candidates to return.

    • grounding_source – If specified, grounding feature will be enabled using the grounding source. Default: None.

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

send_message_streaming(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None)

Sends message to the language model and gets a streamed response.

The response is only added to the history once it’s fully read.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024]. Uses the value specified when calling ChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0. Uses the value specified when calling ChatModel.start_chat by default.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40. Uses the value specified when calling ChatModel.start_chat by default.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95. Uses the value specified when calling ChatModel.start_chat by default.

    • stop_sequences – Customized stop sequences to stop the decoding process. Uses the value specified when calling ChatModel.start_chat by default.

  • Yields

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

async send_message_streaming_async(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None)

Asynchronously sends message to the language model and gets a streamed response.

The response is only added to the history once it’s fully read.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024]. Uses the value specified when calling ChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0. Uses the value specified when calling ChatModel.start_chat by default.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40. Uses the value specified when calling ChatModel.start_chat by default.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95. Uses the value specified when calling ChatModel.start_chat by default.

    • stop_sequences – Customized stop sequences to stop the decoding process. Uses the value specified when calling ChatModel.start_chat by default.

  • Yields

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

class vertexai.language_models.CodeChatModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai.language_models._language_models._ChatModelBase, vertexai.language_models._language_models._TunableChatModelMixin

CodeChatModel represents a model that is capable of completing code.

Examples

code_chat_model = CodeChatModel.from_pretrained(”codechat-bison@001”)

code_chat = code_chat_model.start_chat(

context=”I’m writing a large-scale enterprise application.”,
max_output_tokens=128,
temperature=0.2,

)

code_chat.send_message(“Please help write a function to calculate the min of two numbers”)

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Vertex LLM. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

classmethod get_tuned_model(tuned_model_name: str)

Loads the specified tuned language model.

list_tuned_model_names()

Lists the names of tuned models.

  • Returns

    A list of tuned models that can be used with the get_tuned_model method.

start_chat(*, context: Optional[str] = None, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, message_history: Optional[List[vertexai.language_models.ChatMessage]] = None, stop_sequences: Optional[List[str]] = None)

Starts a chat session with the code chat model.

  • Parameters

    • context – Context shapes how the model responds throughout the conversation. For example, you can use context to specify words the model can or cannot use, topics to focus on or avoid, or the response format or style.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1000].

    • temperature – Controls the randomness of predictions. Range: [0, 1].

    • stop_sequences – Customized stop sequences to stop the decoding process.

  • Returns

    A ChatSession object.

tune_model(training_data: Union[str, pandas.core.frame.DataFrame], *, train_steps: Optional[int] = None, learning_rate_multiplier: Optional[float] = None, tuning_job_location: Optional[str] = None, tuned_model_location: Optional[str] = None, model_display_name: Optional[str] = None, default_context: Optional[str] = None, accelerator_type: Optional[Literal['TPU', 'GPU']] = None, tuning_evaluation_spec: Optional[TuningEvaluationSpec] = None)

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage: \ tuning_job = model.tune_model(...) ... do some other work tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete ``

  • Parameters

    • training_data – A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

    • train_steps – Number of training batches to tune on (batch size is 8 samples).

    • learning_rate – Deprecated. Use learning_rate_multiplier instead. Learning rate to use in tuning.

    • learning_rate_multiplier – Learning rate multiplier to use in tuning.

    • tuning_job_location – GCP location where the tuning job should be run.

    • tuned_model_location – GCP location where the tuned model should be deployed.

    • model_display_name – Custom display name for the tuned model.

    • default_context – The context to use for all training samples by default.

    • accelerator_type – Type of accelerator to use. Can be “TPU” or “GPU”.

    • tuning_evaluation_spec – Specification for the model evaluation during tuning.

  • Returns

    A LanguageModelTuningJob object that represents the tuning job. Calling job.result() blocks until the tuning is complete and returns a LanguageModel object.

  • Raises

    • ValueError – If the “tuning_job_location” value is not supported

    • ValueError – If the “tuned_model_location” value is not supported

    • RuntimeError – If the model does not support tuning

    • AttributeError – If any attribute in the “tuning_evaluation_spec” is not supported

class vertexai.language_models.CodeChatSession(model: vertexai.language_models.CodeChatModel, context: Optional[str] = None, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, message_history: Optional[List[vertexai.language_models.ChatMessage]] = None, stop_sequences: Optional[List[str]] = None)

Bases: vertexai.language_models._language_models._ChatSessionBase

CodeChatSession represents a chat session with code chat language model.

Within a code chat session, the model keeps context and remembers the previous converstion.

property message_history(: List[vertexai.language_models.ChatMessage )

List of previous messages.

send_message(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, stop_sequences: Optional[List[str]] = None, candidate_count: Optional[int] = None)

Sends message to the code chat model and gets a response.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1000]. Uses the value specified when calling CodeChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Uses the value specified when calling CodeChatModel.start_chat by default.

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • candidate_count – Number of candidates to return.

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

async send_message_async(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, candidate_count: Optional[int] = None)

Asynchronously sends message to the code chat model and gets a response.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1000]. Uses the value specified when calling CodeChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Uses the value specified when calling CodeChatModel.start_chat by default.

    • candidate_count – Number of candidates to return.

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

send_message_streaming(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, stop_sequences: Optional[List[str]] = None)

Sends message to the language model and gets a streamed response.

The response is only added to the history once it’s fully read.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024]. Uses the value specified when calling ChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0. Uses the value specified when calling ChatModel.start_chat by default.

    • stop_sequences – Customized stop sequences to stop the decoding process. Uses the value specified when calling ChatModel.start_chat by default.

  • Returns

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

send_message_streaming_async(message: str, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, stop_sequences: Optional[List[str]] = None)

Asynchronously sends message to the language model and gets a streamed response.

The response is only added to the history once it’s fully read.

  • Parameters

    • message – Message to send to the model

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024]. Uses the value specified when calling ChatModel.start_chat by default.

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0. Uses the value specified when calling ChatModel.start_chat by default.

    • stop_sequences – Customized stop sequences to stop the decoding process. Uses the value specified when calling ChatModel.start_chat by default.

  • Returns

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

class vertexai.language_models.CodeGenerationModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai.language_models._CodeGenerationModel, vertexai.language_models._language_models._TunableTextModelMixin

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Vertex LLM. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

classmethod get_tuned_model(tuned_model_name: str)

Loads the specified tuned language model.

list_tuned_model_names()

Lists the names of tuned models.

  • Returns

    A list of tuned models that can be used with the get_tuned_model method.

predict(prefix: str, suffix: Optional[str] = None, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, stop_sequences: Optional[List[str]] = None, candidate_count: Optional[int] = None)

Gets model response for a single prompt.

  • Parameters

    • prefix – Code before the current point.

    • suffix – Code after the current point.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1000].

    • temperature – Controls the randomness of predictions. Range: [0, 1].

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • candidate_count – Number of response candidates to return.

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

async predict_async(prefix: str, suffix: Optional[str] = None, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, stop_sequences: Optional[List[str]] = None, candidate_count: Optional[int] = None)

Asynchronously gets model response for a single prompt.

  • Parameters

    • prefix – Code before the current point.

    • suffix – Code after the current point.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1000].

    • temperature – Controls the randomness of predictions. Range: [0, 1].

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • candidate_count – Number of response candidates to return.

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

predict_streaming(prefix: str, suffix: Optional[str] = None, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, stop_sequences: Optional[List[str]] = None)

Predicts the code based on previous code.

The result is a stream (generator) of partial responses.

  • Parameters

    • prefix – Code before the current point.

    • suffix – Code after the current point.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1000].

    • temperature – Controls the randomness of predictions. Range: [0, 1].

    • stop_sequences – Customized stop sequences to stop the decoding process.

  • Yields

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

async predict_streaming_async(prefix: str, suffix: Optional[str] = None, *, max_output_tokens: Optional[int] = None, temperature: Optional[float] = None, stop_sequences: Optional[List[str]] = None)

Asynchronously predicts the code based on previous code.

The result is a stream (generator) of partial responses.

  • Parameters

    • prefix – Code before the current point.

    • suffix – Code after the current point.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1000].

    • temperature – Controls the randomness of predictions. Range: [0, 1].

    • stop_sequences – Customized stop sequences to stop the decoding process.

  • Yields

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

tune_model(training_data: Union[str, pandas.core.frame.DataFrame], *, train_steps: Optional[int] = None, learning_rate_multiplier: Optional[float] = None, tuning_job_location: Optional[str] = None, tuned_model_location: Optional[str] = None, model_display_name: Optional[str] = None, tuning_evaluation_spec: Optional[TuningEvaluationSpec] = None, accelerator_type: Optional[Literal['TPU', 'GPU']] = None)

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage:

``

` tuning_job = model.tune_model(…) … do some other work tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete

  • Parameters

    • training_data – A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

    • train_steps – Number of training batches to tune on (batch size is 8 samples).

    • learning_rate_multiplier – Learning rate multiplier to use in tuning.

    • tuning_job_location – GCP location where the tuning job should be run.

    • tuned_model_location – GCP location where the tuned model should be deployed.

    • model_display_name – Custom display name for the tuned model.

    • tuning_evaluation_spec – Specification for the model evaluation during tuning.

    • accelerator_type – Type of accelerator to use. Can be “TPU” or “GPU”.

  • Returns

    A LanguageModelTuningJob object that represents the tuning job. Calling job.result() blocks until the tuning is complete and returns a LanguageModel object.

  • Raises

    • ValueError – If the “tuning_job_location” value is not supported

    • ValueError – If the “tuned_model_location” value is not supported

    • RuntimeError – If the model does not support tuning

class vertexai.language_models.GroundingSource()

Bases: object

class VertexAISearch(data_store_id: str, location: str, project: Optional[str] = None, disable_attribution: bool = False)

Bases: vertexai.language_models._language_models._GroundingSourceBase

VertexAISearchDatastore represents a grounding source using Vertex AI Search datastore .. attribute:: data_store_id

Data store ID of the Vertex AI Search datastore.

  • type

    str

location()

GCP multi region where you have set up your Vertex AI Search data store. Possible values can be global, us, eu, etc. Learn more about Vertex AI Search location here: https://cloud.google.com/generative-ai-app-builder/docs/locations

project()

The project where you have set up your Vertex AI Search. If not specified, will assume that your Vertex AI Search is within your current project.

  • Type

    Optional[str]

disable_attribution()

If set to True, skip finding claim attributions (i.e not generate grounding citation). Default: False.

class WebSearch(disable_attribution: bool = False)

Bases: vertexai.language_models._language_models._GroundingSourceBase

WebSearch represents a grounding source using public web search. .. attribute:: disable_attribution

If set to True, skip finding claim attributions (i.e not generate grounding citation). Default: False.

  • type

    bool

class vertexai.language_models.InputOutputTextPair(input_text: str, output_text: str)

Bases: object

InputOutputTextPair represents a pair of input and output texts.

class vertexai.language_models.TextEmbedding(values: List[float], statistics: Optional[vertexai.language_models.TextEmbeddingStatistics] = None, _prediction_response: Optional[google.cloud.aiplatform.models.Prediction] = None)

Bases: object

Text embedding vector and statistics.

class vertexai.language_models.TextEmbeddingInput(text: str, task_type: Optional[str] = None, title: Optional[str] = None)

Bases: object

Structural text embedding input.

text()

The main text content to embed.

task_type()

The name of the downstream task the embeddings will be used for. Valid values: RETRIEVAL_QUERY

Specifies the given text is a query in a search/retrieval setting.

RETRIEVAL_DOCUMENT

Specifies the given text is a document from the corpus being searched.

SEMANTIC_SIMILARITY

Specifies the given text will be used for STS.

CLASSIFICATION

Specifies that the given text will be classified.

CLUSTERING

Specifies that the embeddings will be used for clustering.
  • Type

    Optional[str]

title()

Optional identifier of the text content.

  • Type

    Optional[str]

class vertexai.language_models.TextEmbeddingModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai.language_models._language_models._LanguageModel

TextEmbeddingModel class calculates embeddings for the given texts.

Examples:

# Getting embedding:
model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001")
embeddings = model.get_embeddings(["What is life?"])
for embedding in embeddings:
    vector = embedding.values
    print(len(vector))

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Vertex LLM. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

get_embeddings(texts: List[Union[str, vertexai.language_models.TextEmbeddingInput]], *, auto_truncate: bool = True)

Calculates embeddings for the given texts.

  • Parameters

    • texts (str) – A list of texts or TextEmbeddingInput objects to embed.

    • auto_truncate (bool) – Whether to automatically truncate long texts. Default: True.

  • Returns

    A list of TextEmbedding objects.

async get_embeddings_async(texts: List[Union[str, vertexai.language_models.TextEmbeddingInput]], *, auto_truncate: bool = True)

Asynchronously calculates embeddings for the given texts.

  • Parameters

    • texts (str) – A list of texts or TextEmbeddingInput objects to embed.

    • auto_truncate (bool) – Whether to automatically truncate long texts. Default: True.

  • Returns

    A list of TextEmbedding objects.

class vertexai.language_models.TextGenerationModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai.language_models._language_models._TextGenerationModel, vertexai.language_models._language_models._TunableTextModelMixin, vertexai.language_models._language_models._ModelWithBatchPredict

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Vertex LLM. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

batch_predict(*, dataset: Union[str, List[str]], destination_uri_prefix: str, model_parameters: Optional[Dict] = None)

Starts a batch prediction job with the model.

  • Parameters

    • dataset – The location of the dataset. gs:// and bq:// URIs are supported.

    • destination_uri_prefix – The URI prefix for the prediction. gs:// and bq:// URIs are supported.

    • model_parameters – Model-specific parameters to send to the model.

  • Returns

    A BatchPredictionJob object

  • Raises

    ValueError – When source or destination URI is not supported.

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

classmethod get_tuned_model(tuned_model_name: str)

Loads the specified tuned language model.

list_tuned_model_names()

Lists the names of tuned models.

  • Returns

    A list of tuned models that can be used with the get_tuned_model method.

predict(prompt: str, *, max_output_tokens: Optional[int] = 128, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None, candidate_count: Optional[int] = None, grounding_source: Optional[Union[vertexai.language_models._language_models.WebSearch, vertexai.language_models._language_models.VertexAISearch]] = None, logprobs: Optional[int] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[Dict[int, float]] = None)

Gets model response for a single prompt.

  • Parameters

    • prompt – Question to ask the model.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024].

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95.

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • candidate_count – Number of response candidates to return.

    • grounding_source – If specified, grounding feature will be enabled using the grounding source. Default: None.

    • logprobs – Returns the top logprobs most likely candidate tokens with their log probabilities at each generation step. The chosen tokens and their log probabilities at each step are always returned. The chosen token may or may not be in the top logprobs most likely candidates. The minimum value for logprobs is 0, which means only the chosen tokens and their log probabilities are returned. The maximum value for logprobs is 5.

    • presence_penalty – Positive values penalize tokens that have appeared in the generated text, thus increasing the possibility of generating more diversed topics. Range: [-2.0, 2.0]

    • frequency_penalty – Positive values penalize tokens that repeatedly appear in the generated text, thus decreasing the possibility of repeating the same content. Range: [-2.0, 2.0]

    • logit_bias – Mapping from token IDs (integers) to their bias values (floats). The bias values are added to the logits before sampling. Larger positive bias increases the probability of choosing the token. Smaller negative bias decreases the probability of choosing the token. Range: [-100.0, 100.0]

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

async predict_async(prompt: str, *, max_output_tokens: Optional[int] = 128, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None, candidate_count: Optional[int] = None, grounding_source: Optional[Union[vertexai.language_models._language_models.WebSearch, vertexai.language_models._language_models.VertexAISearch]] = None, logprobs: Optional[int] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[Dict[int, float]] = None)

Asynchronously gets model response for a single prompt.

  • Parameters

    • prompt – Question to ask the model.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024].

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95.

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • candidate_count – Number of response candidates to return.

    • grounding_source – If specified, grounding feature will be enabled using the grounding source. Default: None.

    • logprobs – Returns the top logprobs most likely candidate tokens with their log probabilities at each generation step. The chosen tokens and their log probabilities at each step are always returned. The chosen token may or may not be in the top logprobs most likely candidates. The minimum value for logprobs is 0, which means only the chosen tokens and their log probabilities are returned. The maximum value for logprobs is 5.

    • presence_penalty – Positive values penalize tokens that have appeared in the generated text, thus increasing the possibility of generating more diversed topics. Range: [-2.0, 2.0]

    • frequency_penalty – Positive values penalize tokens that repeatedly appear in the generated text, thus decreasing the possibility of repeating the same content. Range: [-2.0, 2.0]

    • logit_bias – Mapping from token IDs (integers) to their bias values (floats). The bias values are added to the logits before sampling. Larger positive bias increases the probability of choosing the token. Smaller negative bias decreases the probability of choosing the token. Range: [-100.0, 100.0]

  • Returns

    A MultiCandidateTextGenerationResponse object that contains the text produced by the model.

predict_streaming(prompt: str, *, max_output_tokens: int = 128, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None, logprobs: Optional[int] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[Dict[int, float]] = None)

Gets a streaming model response for a single prompt.

The result is a stream (generator) of partial responses.

  • Parameters

    • prompt – Question to ask the model.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024].

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95.

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • logprobs – Returns the top logprobs most likely candidate tokens with their log probabilities at each generation step. The chosen tokens and their log probabilities at each step are always returned. The chosen token may or may not be in the top logprobs most likely candidates. The minimum value for logprobs is 0, which means only the chosen tokens and their log probabilities are returned. The maximum value for logprobs is 5.

    • presence_penalty – Positive values penalize tokens that have appeared in the generated text, thus increasing the possibility of generating more diversed topics. Range: [-2.0, 2.0]

    • frequency_penalty – Positive values penalize tokens that repeatedly appear in the generated text, thus decreasing the possibility of repeating the same content. Range: [-2.0, 2.0]

    • logit_bias – Mapping from token IDs (integers) to their bias values (floats). The bias values are added to the logits before sampling. Larger positive bias increases the probability of choosing the token. Smaller negative bias decreases the probability of choosing the token. Range: [-100.0, 100.0]

  • Yields

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

async predict_streaming_async(prompt: str, *, max_output_tokens: int = 128, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, stop_sequences: Optional[List[str]] = None, logprobs: Optional[int] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, logit_bias: Optional[Dict[int, float]] = None)

Asynchronously gets a streaming model response for a single prompt.

The result is a stream (generator) of partial responses.

  • Parameters

    • prompt – Question to ask the model.

    • max_output_tokens – Max length of the output text in tokens. Range: [1, 1024].

    • temperature – Controls the randomness of predictions. Range: [0, 1]. Default: 0.

    • top_k – The number of highest probability vocabulary tokens to keep for top-k-filtering. Range: [1, 40]. Default: 40.

    • top_p – The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Range: [0, 1]. Default: 0.95.

    • stop_sequences – Customized stop sequences to stop the decoding process.

    • logprobs – Returns the top logprobs most likely candidate tokens with their log probabilities at each generation step. The chosen tokens and their log probabilities at each step are always returned. The chosen token may or may not be in the top logprobs most likely candidates. The minimum value for logprobs is 0, which means only the chosen tokens and their log probabilities are returned. The maximum value for logprobs is 5.

    • presence_penalty – Positive values penalize tokens that have appeared in the generated text, thus increasing the possibility of generating more diversed topics. Range: [-2.0, 2.0]

    • frequency_penalty – Positive values penalize tokens that repeatedly appear in the generated text, thus decreasing the possibility of repeating the same content. Range: [-2.0, 2.0]

    • logit_bias – Mapping from token IDs (integers) to their bias values (floats). The bias values are added to the logits before sampling. Larger positive bias increases the probability of choosing the token. Smaller negative bias decreases the probability of choosing the token. Range: [-100.0, 100.0]

  • Yields

    A stream of TextGenerationResponse objects that contain partial responses produced by the model.

tune_model(training_data: Union[str, pandas.core.frame.DataFrame], *, train_steps: Optional[int] = None, learning_rate_multiplier: Optional[float] = None, tuning_job_location: Optional[str] = None, tuned_model_location: Optional[str] = None, model_display_name: Optional[str] = None, tuning_evaluation_spec: Optional[TuningEvaluationSpec] = None, accelerator_type: Optional[Literal['TPU', 'GPU']] = None)

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage:

``

` tuning_job = model.tune_model(…) … do some other work tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete

  • Parameters

    • training_data – A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

    • train_steps – Number of training batches to tune on (batch size is 8 samples).

    • learning_rate_multiplier – Learning rate multiplier to use in tuning.

    • tuning_job_location – GCP location where the tuning job should be run.

    • tuned_model_location – GCP location where the tuned model should be deployed.

    • model_display_name – Custom display name for the tuned model.

    • tuning_evaluation_spec – Specification for the model evaluation during tuning.

    • accelerator_type – Type of accelerator to use. Can be “TPU” or “GPU”.

  • Returns

    A LanguageModelTuningJob object that represents the tuning job. Calling job.result() blocks until the tuning is complete and returns a LanguageModel object.

  • Raises

    • ValueError – If the “tuning_job_location” value is not supported

    • ValueError – If the “tuned_model_location” value is not supported

    • RuntimeError – If the model does not support tuning

class vertexai.language_models.TextGenerationResponse(text: str, _prediction_response: typing.Any, is_blocked: bool = False, errors: typing.Tuple[int] = (), safety_attributes: typing.Dict[str, float] =

Bases: object

TextGenerationResponse represents a response of a language model. .. attribute:: text

The generated text

  • type

    str

is_blocked()

Whether the the request was blocked.

errors()

The error codes indicate why the response was blocked. Learn more information about safety errors here: this documentation https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_errors

  • Type

    Tuple[int]

safety_attributes()

Scores for safety attributes. Learn more about the safety attributes here: https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_descriptions

grounding_metadata()

Metadata for grounding.

  • Type

    Optional[vertexai.language_models._language_models.GroundingMetadata]

property raw_prediction_response(: google.cloud.aiplatform.models.Predictio )

Raw prediction response.

Classes for working with language models.

class vertexai.language_models._language_models._TunableModelMixin(model_id: str, endpoint_name: Optional[str] = None)

Model that can be tuned.

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Vertex LLM. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod get_tuned_model(tuned_model_name: str)

Loads the specified tuned language model.

list_tuned_model_names()

Lists the names of tuned models.

  • Returns

    A list of tuned models that can be used with the get_tuned_model method.

tune_model(training_data: Union[str, pandas.core.frame.DataFrame], *, train_steps: Optional[int] = None, learning_rate: Optional[float] = None, learning_rate_multiplier: Optional[float] = None, tuning_job_location: Optional[str] = None, tuned_model_location: Optional[str] = None, model_display_name: Optional[str] = None, tuning_evaluation_spec: Optional[TuningEvaluationSpec] = None, default_context: Optional[str] = None, accelerator_type: Optional[Literal['TPU', 'GPU']] = None)

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage: \ tuning_job = model.tune_model(...) ... do some other work tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete ``

  • Parameters

    • training_data – A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

    • train_steps – Number of training batches to tune on (batch size is 8 samples).

    • learning_rate – Deprecated. Use learning_rate_multiplier instead. Learning rate to use in tuning.

    • learning_rate_multiplier – Learning rate multiplier to use in tuning.

    • tuning_job_location – GCP location where the tuning job should be run.

    • tuned_model_location – GCP location where the tuned model should be deployed.

    • model_display_name – Custom display name for the tuned model.

    • tuning_evaluation_spec – Specification for the model evaluation during tuning.

    • default_context – The context to use for all training samples by default.

    • accelerator_type – Type of accelerator to use. Can be “TPU” or “GPU”.

  • Returns

    A LanguageModelTuningJob object that represents the tuning job. Calling job.result() blocks until the tuning is complete and returns a LanguageModel object.

  • Raises

    • ValueError – If the “tuning_job_location” value is not supported

    • ValueError – If the “tuned_model_location” value is not supported

    • RuntimeError – If the model does not support tuning

class vertexai.preview.VertexModel()

Bases: object

mixin class that can be used to add Vertex AI remote execution to a custom model.

vertexai.preview.end_run(state: google.cloud.aiplatform_v1.types.execution.Execution.State = State.COMPLETE)

Ends the the current experiment run.

\py aiplatform.start_run('my-run') ... aiplatform.end_run() ``

vertexai.preview.from_pretrained(*, model_name: Optional[str] = None, custom_job_name: Optional[str] = None, foundation_model_name: Optional[str] = None)

Pulls a model from Model Registry or from a CustomJob ID for retraining.

The returned model is wrapped with a Vertex wrapper for running remote jobs on Vertex, unless an unwrapped model was registered to Model Registry.

  • Parameters

    • model_name (str) – Optional. The resource ID or fully qualified resource name of a registered model. Format: “12345678910” or “projects/123/locations/us-central1/models/12345678910@1”. One of model_name, custom_job_name, or foundation_model_name is required.

    • custom_job_name (str) – Optional. The resource ID or fully qualified resource name of a CustomJob created with Vertex SDK remote training. If the job has completed successfully, this will load the trained model created in the CustomJob. One of model_name, custom_job_name, or foundation_model_name is required.

    • foundation_model_name (str) – Optional. The name of the foundation model to load. For example: “text-bison@001”. One of model_name,`custom_job_name`, or foundation_model_name is required.

  • Returns

    local model for uptraining.

  • Return type

    model

  • Raises

    ValueError – If registered model is not registered through vertexai.preview.register If custom job was not created with Vertex SDK remote training If both or neither model_name or custom_job_name are provided

vertexai.preview.get_experiment_df(experiment: Optional[str] = None)

Returns a Pandas DataFrame of the parameters and metrics associated with one experiment.

Example:

``
`

py aiplatform.init(experiment=’exp-1’) aiplatform.start_run(run=’run-1’) aiplatform.log_params({‘learning_rate’: 0.1}) aiplatform.log_metrics({‘accuracy’: 0.9})

aiplatform.start_run(run=’run-2’) aiplatform.log_params({‘learning_rate’: 0.2}) aiplatform.log_metrics({‘accuracy’: 0.95})

aiplatform.get_experiments_df()

``
`

Will result in the following DataFrame:

\ experiment_name | run_name | param.learning_rate | metric.accuracy exp-1 | run-1 | 0.1 | 0.9 exp-1 | run-2 | 0.2 | 0.95 ``

  • Parameters

    experiment (str) – Name of the Experiment to filter results. If not set, return results of current active experiment.

  • Returns

    Pandas Dataframe of Experiment with metrics and parameters.

  • Raises

    • NotFound exception if experiment does not exist.

    • ValueError if given experiment is not associated with a wrong schema.

vertexai.preview.init(*, remote: Optional[bool] = None, autolog: Optional[bool] = None, cluster: Optional[vertexai.preview._workflow.shared.configs.PersistentResourceConfig] = None)

Updates preview global parameters for Vertex remote execution.

  • Parameters

    • remote (bool) – Optional. A global flag to indicate whether or not a method will be executed remotely. Default is Flase. The method level remote flag has higher priority than this global flag.

    • autolog (bool) – Optional. Whether or not to turn on autologging feature for remote execution. To learn more about the autologging feature, see https://cloud.google.com/vertex-ai/docs/experiments/autolog-data.

    • cluster (PersistentResourceConfig) – Optional. If passed, check if the cluster exists. If not, create a default one (single node, “n1-standard-4”, no GPU) with the given name. Then use the cluster to run CustomJobs. Default is None. Example usage: from vertexai.preview.shared.configs import PersistentResourceConfig cluster = PersistentResourceConfig(

      name=”my-cluster-1”, resource_pools=[

      ResourcePool(replica_count=1,), ResourcePool(

      machine_type=”n1-standard-8”, replica_count=2, accelerator_type=”NVIDIA_TESLA_P100”, accelerator_count=1, ),

      ]

      )

vertexai.preview.log_classification_metrics(*, labels: Optional[List[str]] = None, matrix: Optional[List[List[int]]] = None, fpr: Optional[List[float]] = None, tpr: Optional[List[float]] = None, threshold: Optional[List[float]] = None, display_name: Optional[str] = None)

Create an artifact for classification metrics and log to ExperimentRun. Currently support confusion matrix and ROC curve.

``
`

py my_run = aiplatform.ExperimentRun(‘my-run’, experiment=’my-experiment’) classification_metrics = my_run.log_classification_metrics(

display_name=’my-classification-metrics’, labels=[‘cat’, ‘dog’], matrix=[[9, 1], [1, 9]], fpr=[0.1, 0.5, 0.9], tpr=[0.1, 0.7, 0.9], threshold=[0.9, 0.5, 0.1],

  • Parameters

    • labels (List[str]) – Optional. List of label names for the confusion matrix. Must be set if ‘matrix’ is set.

    • matrix (List[List[int]) – Optional. Values for the confusion matrix. Must be set if ‘labels’ is set.

    • fpr (List[float]) – Optional. List of false positive rates for the ROC curve. Must be set if ‘tpr’ or ‘thresholds’ is set.

    • tpr (List[float]) – Optional. List of true positive rates for the ROC curve. Must be set if ‘fpr’ or ‘thresholds’ is set.

    • threshold (List[float]) – Optional. List of thresholds for the ROC curve. Must be set if ‘fpr’ or ‘tpr’ is set.

    • display_name (str) – Optional. The user-defined name for the classification metric artifact.

  • Raises

    ValueError – if ‘labels’ and ‘matrix’ are not set together or if ‘labels’ and ‘matrix’ are not in the same length or if ‘fpr’ and ‘tpr’ and ‘threshold’ are not set together or if ‘fpr’ and ‘tpr’ and ‘threshold’ are not in the same length

vertexai.preview.log_metrics(metrics: Dict[str, Union[float, int, str]])

Log single or multiple Metrics with specified key and value pairs.

Metrics with the same key will be overwritten.

\py aiplatform.start_run('my-run', experiment='my-experiment') aiplatform.log_metrics({'accuracy': 0.9, 'recall': 0.8}) ``

vertexai.preview.log_params(params: Dict[str, Union[float, int, str]])

Log single or multiple parameters with specified key and value pairs.

Parameters with the same key will be overwritten.

\py aiplatform.start_run('my-run') aiplatform.log_params({'learning_rate': 0.1, 'dropout_rate': 0.2}) ``

vertexai.preview.log_time_series_metrics(metrics: Dict[str, float], step: Optional[int] = None, wall_time: Optional[google.protobuf.timestamp_pb2.Timestamp] = None)

Logs time series metrics to to this Experiment Run.

Requires the experiment or experiment run has a backing Vertex Tensorboard resource.

``
`

py my_tensorboard = aiplatform.Tensorboard(…) aiplatform.init(experiment=’my-experiment’, experiment_tensorboard=my_tensorboard) aiplatform.start_run(‘my-run’)

increments steps as logged

for i in range(10):

aiplatform.log_time_series_metrics({‘loss’: loss})

explicitly log steps

for i in range(10):

aiplatform.log_time_series_metrics({‘loss’: loss}, step=i)

``
`
  • Parameters

    • metrics (Dict[str, **Union[str, *[float](https://python.readthedocs.io/en/latest/library/functions.html#float)]*]) – Required. Dictionary of where keys are metric names and values are metric values.

    • step (int) – Optional. Step index of this data point within the run.

      If not provided, the latest step amongst all time series metrics already logged will be used.

    • wall_time (timestamp_pb2.Timestamp) – Optional. Wall clock timestamp when this data point is generated by the end user.

      If not provided, this will be generated based on the value from time.time()

  • Raises

    RuntimeError – If current experiment run doesn’t have a backing Tensorboard resource.

vertexai.preview.register(model: Union[sklearn.base.BaseEstimator, tf.Module, torch.nn.Module], use_gpu: bool = False)

Registers a model and returns a Model representing the registered Model resource.

  • Parameters

    • model (Union["sklearn.base.BaseEstimator", **"tensorflow.Module", **"torch.nn.Module"]) – Required. An OSS model. Supported frameworks: sklearn, tensorflow, pytorch.

    • use_gpu (bool) – Optional. Whether to use GPU for model serving. Default to False.

  • Returns

    Instantiated representation of the registered model resource.

  • Return type

    vertex_model (aiplatform.Model)

  • Raises

    ValueError – if default staging bucket is not set or if the framework is not supported.

vertexai.preview.remote(cls_or_method: Any)

Takes a class or method and add Vertex remote execution support.

LogisticRegression = vertexai.preview.remote(LogisticRegression) model = LogisticRegression() model.fit.vertex.remote_config.staging_bucket = REMOTE_JOB_BUCKET model.fit.vertex.remote=True model.fit(X_train, y_train)

``
`
  • Parameters

    cls_or_method (Any) – Required. A class or method that will be added Vertex remote execution support.

  • Returns

    A class or method that can be executed remotely.

vertexai.preview.start_run(run: str, *, tensorboard: Optional[Union[google.cloud.aiplatform.tensorboard.tensorboard_resource.Tensorboard, str]] = None, resume=False)

Start a run to current session.

\py aiplatform.init(experiment='my-experiment') aiplatform.start_run('my-run') aiplatform.log_params({'learning_rate':0.1}) ``

Use as context manager. Run will be ended on context exit:

``
`

py aiplatform.init(experiment=’my-experiment’) with aiplatform.start_run(‘my-run’) as my_run:

my_run.log_params({‘learning_rate’:0.1})

``
`

Resume a previously started run:

``
`

py aiplatform.init(experiment=’my-experiment’) with aiplatform.start_run(‘my-run’, resume=True) as my_run:

my_run.log_params({‘learning_rate’:0.1})

``
`
  • Parameters

    • run (str) – Required. Name of the run to assign current session with.

    • Union[str (tensorboard) – Optional. Backing Tensorboard Resource to enable and store time series metrics logged to this Experiment Run using log_time_series_metrics.

      If not provided will the the default backing tensorboard of the currently set experiment.

    • tensorboard_resource.Tensorboard] – Optional. Backing Tensorboard Resource to enable and store time series metrics logged to this Experiment Run using log_time_series_metrics.

      If not provided will the the default backing tensorboard of the currently set experiment.

    • resume (bool) – Whether to resume this run. If False a new run will be created.

  • Raises

    ValueError – if experiment is not set. Or if run execution or metrics artifact is already created but with a different schema.

Classes for working with language models.

class vertexai.preview.language_models.ChatMessage(content: str, author: str)

Bases: object

A chat message.

content()

Content of the message.

author()

Author of the message.

vertexai.preview.language_models.ChatModel()

alias of vertexai.preview.language_models._PreviewChatModel

vertexai.preview.language_models.ChatSession()

alias of vertexai.preview.language_models._PreviewChatSession

vertexai.preview.language_models.CodeChatModel()

alias of vertexai.preview.language_models._PreviewCodeChatModel

vertexai.preview.language_models.CodeChatSession()

alias of vertexai.preview.language_models._PreviewCodeChatSession

vertexai.preview.language_models.CodeGenerationModel()

alias of vertexai.preview.language_models._PreviewCodeGenerationModel

class vertexai.preview.language_models.CountTokensResponse(total_tokens: int, total_billable_characters: int, _count_tokens_response: Any)

Bases: object

The response from a count_tokens request. .. attribute:: total_tokens

The total number of tokens counted across all instances passed to the request.

  • type

    int

total_billable_characters()

The total number of billable characters counted across all instances from the request.

class vertexai.preview.language_models.EvaluationClassificationMetric(label_name: Optional[str] = None, auPrc: Optional[float] = None, auRoc: Optional[float] = None, logLoss: Optional[float] = None, confidenceMetrics: Optional[List[Dict[str, Any]]] = None, confusionMatrix: Optional[Dict[str, Any]] = None)

Bases: vertexai.language_models._evaluatable_language_models._EvaluationMetricBase

The evaluation metric response for classification metrics.

  • Parameters

    • label_name (str) – Optional. The name of the label associated with the metrics. This is only returned when only_summary_metrics=False is passed to evaluate().

    • auPrc (float) – Optional. The area under the precision recall curve.

    • auRoc (float) – Optional. The area under the receiver operating characteristic curve.

    • logLoss (float) – Optional. Logarithmic loss.

    • confidenceMetrics (List[Dict[str, **Any]]) – Optional. This is only returned when only_summary_metrics=False is passed to evaluate().

    • confusionMatrix (Dict[str, **Any]) – Optional. This is only returned when only_summary_metrics=False is passed to evaluate().

property input_dataset_paths(: [str](https://python.readthedocs.io/en/latest/library/stdtypes.html#str )

The Google Cloud Storage paths to the dataset used for this evaluation.

property task_name(: [str](https://python.readthedocs.io/en/latest/library/stdtypes.html#str )

The type of evaluation task for the evaluation..

class vertexai.preview.language_models.EvaluationMetric(bleu: Optional[float] = None, rougeLSum: Optional[float] = None)

Bases: vertexai.language_models._evaluatable_language_models._EvaluationMetricBase

The evaluation metric response.

  • Parameters

    • bleu (float) – Optional. BLEU (Bilingual evauation understudy). Scores based on sacrebleu implementation.

    • rougeLSum (float) – Optional. ROUGE-L (Longest Common Subsequence) scoring at summary level.

property input_dataset_paths(: [str](https://python.readthedocs.io/en/latest/library/stdtypes.html#str )

The Google Cloud Storage paths to the dataset used for this evaluation.

property task_name(: [str](https://python.readthedocs.io/en/latest/library/stdtypes.html#str )

The type of evaluation task for the evaluation..

class vertexai.preview.language_models.EvaluationQuestionAnsweringSpec(ground_truth_data: Union[List[str], str, pandas.DataFrame], task_name: str = 'question-answering')

Bases: vertexai.language_models._evaluatable_language_models._EvaluationTaskSpec

Spec for question answering model evaluation tasks.

class vertexai.preview.language_models.EvaluationTextClassificationSpec(ground_truth_data: Union[List[str], str, pandas.DataFrame], target_column_name: str, class_names: List[str])

Bases: vertexai.language_models._evaluatable_language_models._EvaluationTaskSpec

Spec for text classification model evaluation tasks.

  • Parameters

    • target_column_name (str) – Required. The label column in the dataset provided in ground_truth_data. Required when task_name=’text-classification’.

    • class_names (List[str]) – Required. A list of all possible label names in your dataset. Required when task_name=’text-classification’.

class vertexai.preview.language_models.EvaluationTextGenerationSpec(ground_truth_data: Union[List[str], str, pandas.DataFrame])

Bases: vertexai.language_models._evaluatable_language_models._EvaluationTaskSpec

Spec for text generation model evaluation tasks.

class vertexai.preview.language_models.EvaluationTextSummarizationSpec(ground_truth_data: Union[List[str], str, pandas.DataFrame], task_name: str = 'summarization')

Bases: vertexai.language_models._evaluatable_language_models._EvaluationTaskSpec

Spec for text summarization model evaluation tasks.

class vertexai.preview.language_models.InputOutputTextPair(input_text: str, output_text: str)

Bases: object

InputOutputTextPair represents a pair of input and output texts.

class vertexai.preview.language_models.TextEmbedding(values: List[float], statistics: Optional[vertexai.language_models.TextEmbeddingStatistics] = None, _prediction_response: Optional[google.cloud.aiplatform.models.Prediction] = None)

Bases: object

Text embedding vector and statistics.

class vertexai.preview.language_models.TextEmbeddingInput(text: str, task_type: Optional[str] = None, title: Optional[str] = None)

Bases: object

Structural text embedding input.

text()

The main text content to embed.

task_type()

The name of the downstream task the embeddings will be used for. Valid values: RETRIEVAL_QUERY

Specifies the given text is a query in a search/retrieval setting.

RETRIEVAL_DOCUMENT

Specifies the given text is a document from the corpus being searched.

SEMANTIC_SIMILARITY

Specifies the given text will be used for STS.

CLASSIFICATION

Specifies that the given text will be classified.

CLUSTERING

Specifies that the embeddings will be used for clustering.
  • Type

    Optional[str]

title()

Optional identifier of the text content.

  • Type

    Optional[str]

vertexai.preview.language_models.TextEmbeddingModel()

alias of vertexai.preview.language_models._PreviewTextEmbeddingModel

vertexai.preview.language_models.TextGenerationModel()

alias of vertexai.preview.language_models._PreviewTextGenerationModel

class vertexai.preview.language_models.TextGenerationResponse(text: str, _prediction_response: typing.Any, is_blocked: bool = False, errors: typing.Tuple[int] = (), safety_attributes: typing.Dict[str, float] =

Bases: object

TextGenerationResponse represents a response of a language model. .. attribute:: text

The generated text

  • type

    str

is_blocked()

Whether the the request was blocked.

errors()

The error codes indicate why the response was blocked. Learn more information about safety errors here: this documentation https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_errors

  • Type

    Tuple[int]

safety_attributes()

Scores for safety attributes. Learn more about the safety attributes here: https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_descriptions

grounding_metadata()

Metadata for grounding.

  • Type

    Optional[vertexai.language_models._language_models.GroundingMetadata]

property raw_prediction_response(: google.cloud.aiplatform.models.Predictio )

Raw prediction response.

class vertexai.preview.language_models.TuningEvaluationSpec(evaluation_data: Optional[str] = None, evaluation_interval: Optional[int] = None, enable_early_stopping: Optional[bool] = None, enable_checkpoint_selection: Optional[bool] = None, tensorboard: Optional[Union[google.cloud.aiplatform.tensorboard.tensorboard_resource.Tensorboard, str]] = None)

Bases: object

Specification for model evaluation to perform during tuning.

evaluation_data()

GCS URI of the evaluation dataset. This will run model evaluation as part of the tuning job.

  • Type

    Optional[str]

evaluation_interval()

The evaluation will run at every evaluation_interval tuning steps. Default: 20.

  • Type

    Optional[int]

enable_early_stopping()

If True, the tuning may stop early before completing all the tuning steps. Requires evaluation_data.

  • Type

    Optional[bool]

enable_checkpoint_selection()

If set to True, the tuning process returns the best model checkpoint (based on model evaluation). If set to False, the latest model checkpoint is returned. If unset, the selection is only enabled for *-bison@001 models.

  • Type

    Optional[bool]

tensorboard()

Vertex Tensorboard where to write the evaluation metrics. The Tensorboard must be in the same location as the tuning job.

Classes for working with vision models.

class vertexai.vision_models.Image(image_bytes: bytes)

Bases: object

Image.

Creates an Image object.

  • Parameters

    image_bytes – Image file bytes. Image can be in PNG or JPEG format.

static load_from_file(location: str)

Loads image from file.

  • Parameters

    location – Local path from where to load the image.

  • Returns

    Loaded image as an Image object.

save(location: str)

Saves image to a file.

  • Parameters

    location – Local path where to save the image.

show()

Shows the image.

This method only works when in a notebook environment.

class vertexai.vision_models.ImageCaptioningModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai._model_garden._model_garden_models._ModelGardenModel

Generates captions from image.

Examples:

model = ImageCaptioningModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")
captions = model.get_captions(
    image=image,
    # Optional:
    number_of_results=1,
    language="en",
)

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

get_captions(image: vertexai.vision_models.Image, *, number_of_results: int = 1, language: str = 'en')

Generates captions for a given image.

  • Parameters

    • image – The image to get captions for. Size limit: 10 MB.

    • number_of_results – Number of captions to produce. Range: 1-3.

    • language – Language to use for captions. Supported languages: “en”, “fr”, “de”, “it”, “es”

  • Returns

    A list of image caption strings.

class vertexai.vision_models.ImageQnAModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai._model_garden._model_garden_models._ModelGardenModel

Answers questions about an image.

Examples:

model = ImageQnAModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")
answers = model.ask_question(
    image=image,
    question="What color is the car in this image?",
    # Optional:
    number_of_results=1,
)

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

ask_question(image: vertexai.vision_models.Image, question: str, *, number_of_results: int = 1)

Answers questions about an image.

  • Parameters

    • image – The image to get captions for. Size limit: 10 MB.

    • question – Question to ask about the image.

    • number_of_results – Number of captions to produce. Range: 1-3.

  • Returns

    A list of answers.

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

class vertexai.vision_models.ImageTextModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai.vision_models.ImageCaptioningModel, vertexai.vision_models.ImageQnAModel

Generates text from images.

Examples:

model = ImageTextModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")

captions = model.get_captions(
    image=image,
    # Optional:
    number_of_results=1,
    language="en",
)

answers = model.ask_question(
    image=image,
    question="What color is the car in this image?",
    # Optional:
    number_of_results=1,
)

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

ask_question(image: vertexai.vision_models.Image, question: str, *, number_of_results: int = 1)

Answers questions about an image.

  • Parameters

    • image – The image to get captions for. Size limit: 10 MB.

    • question – Question to ask about the image.

    • number_of_results – Number of captions to produce. Range: 1-3.

  • Returns

    A list of answers.

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

get_captions(image: vertexai.vision_models.Image, *, number_of_results: int = 1, language: str = 'en')

Generates captions for a given image.

  • Parameters

    • image – The image to get captions for. Size limit: 10 MB.

    • number_of_results – Number of captions to produce. Range: 1-3.

    • language – Language to use for captions. Supported languages: “en”, “fr”, “de”, “it”, “es”

  • Returns

    A list of image caption strings.

class vertexai.vision_models.MultiModalEmbeddingModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai._model_garden._model_garden_models._ModelGardenModel

Generates embedding vectors from images.

Examples:

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file("image.png")

embeddings = model.get_embeddings(
    image=image,
    contextual_text="Hello world",
)
image_embedding = embeddings.image_embedding
text_embedding = embeddings.text_embedding

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

get_embeddings(image: Optional[vertexai.vision_models.Image] = None, contextual_text: Optional[str] = None)

Gets embedding vectors from the provided image.

  • Parameters

    • image (Image) – Optional. The image to generate embeddings for. One of image or contextual_text is required.

    • contextual_text (str) – Optional. Contextual text for your input image. If provided, the model will also generate an embedding vector for the provided contextual text. The returned image and text embedding vectors are in the same semantic space with the same dimensionality, and the vectors can be used interchangeably for use cases like searching image by text or searching text by image. One of image or contextual_text is required.

  • Returns

    The image and text embedding vectors.

  • Return type

    ImageEmbeddingResponse

class vertexai.vision_models.MultiModalEmbeddingResponse(_prediction_response: Any, image_embedding: Optional[List[float]] = None, text_embedding: Optional[List[float]] = None)

Bases: object

The image embedding response.

image_embedding()

Optional. The embedding vector generated from your image.

text_embedding()

Optional. The embedding vector generated from the contextual text provided for your image.

Classes for working with vision models.

class vertexai.preview.vision_models.GeneratedImage(image_bytes: bytes, generation_parameters: Dict[str, Any])

Bases: vertexai.vision_models.Image

Generated image.

Creates a GeneratedImage object.

  • Parameters

    • image_bytes – Image file bytes. Image can be in PNG or JPEG format.

    • generation_parameters – Image generation parameter values.

property generation_parameters()

Image generation parameters as a dictionary.

static load_from_file(location: str)

Loads image from file.

  • Parameters

    location – Local path from where to load the image.

  • Returns

    Loaded image as a GeneratedImage object.

save(location: str, include_generation_parameters: bool = True)

Saves image to a file.

  • Parameters

    • location – Local path where to save the image.

    • include_generation_parameters – Whether to include the image generation parameters in the image’s EXIF metadata.

show()

Shows the image.

This method only works when in a notebook environment.

class vertexai.preview.vision_models.Image(image_bytes: bytes)

Bases: object

Image.

Creates an Image object.

  • Parameters

    image_bytes – Image file bytes. Image can be in PNG or JPEG format.

static load_from_file(location: str)

Loads image from file.

  • Parameters

    location – Local path from where to load the image.

  • Returns

    Loaded image as an Image object.

save(location: str)

Saves image to a file.

  • Parameters

    location – Local path where to save the image.

show()

Shows the image.

This method only works when in a notebook environment.

class vertexai.preview.vision_models.ImageCaptioningModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai._model_garden._model_garden_models._ModelGardenModel

Generates captions from image.

Examples:

model = ImageCaptioningModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")
captions = model.get_captions(
    image=image,
    # Optional:
    number_of_results=1,
    language="en",
)

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

get_captions(image: vertexai.vision_models.Image, *, number_of_results: int = 1, language: str = 'en')

Generates captions for a given image.

  • Parameters

    • image – The image to get captions for. Size limit: 10 MB.

    • number_of_results – Number of captions to produce. Range: 1-3.

    • language – Language to use for captions. Supported languages: “en”, “fr”, “de”, “it”, “es”

  • Returns

    A list of image caption strings.

class vertexai.preview.vision_models.ImageGenerationModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai._model_garden._model_garden_models._ModelGardenModel

Generates images from text prompt.

Examples:

model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
    prompt="Astronaut riding a horse",
    # Optional:
    number_of_images=1,
    seed=0,
)
response[0].show()
response[0].save("image1.png")

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

edit_image(*, prompt: str, base_image: vertexai.vision_models.Image, mask: Optional[vertexai.vision_models.Image] = None, negative_prompt: Optional[str] = None, number_of_images: int = 1, guidance_scale: Optional[float] = None, language: Optional[str] = None, seed: Optional[int] = None)

Edits an existing image based on text prompt.

  • Parameters

    • prompt – Text prompt for the image.

    • base_image – Base image from which to generate the new image.

    • mask – Mask for the base image.

    • negative_prompt – A description of what you want to omit in the generated images.

    • number_of_images – Number of images to generate. Range: 1..8.

    • guidance_scale – Controls the strength of the prompt. Suggested values are: * 0-9 (low strength) * 10-20 (medium strength) * 21+ (high strength)

    • language – Language of the text prompt for the image. Default: None. Supported values are “en” for English, “hi” for Hindi, “ja” for Japanese, “ko” for Korean, and “auto” for automatic language detection.

    • seed – Image generation random seed.

  • Returns

    An ImageGenerationResponse object.

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

generate_images(prompt: str, *, negative_prompt: Optional[str] = None, number_of_images: int = 1, guidance_scale: Optional[float] = None, language: Optional[str] = None, seed: Optional[int] = None)

Generates images from text prompt.

  • Parameters

    • prompt – Text prompt for the image.

    • negative_prompt – A description of what you want to omit in the generated images.

    • number_of_images – Number of images to generate. Range: 1..8.

    • guidance_scale – Controls the strength of the prompt. Suggested values are: * 0-9 (low strength) * 10-20 (medium strength) * 21+ (high strength)

    • language – Language of the text prompt for the image. Default: None. Supported values are “en” for English, “hi” for Hindi, “ja” for Japanese, “ko” for Korean, and “auto” for automatic language detection.

    • seed – Image generation random seed.

  • Returns

    An ImageGenerationResponse object.

upscale_image(image: Union[vertexai.vision_models.Image, vertexai.preview.vision_models.GeneratedImage], new_size: Optional[int] = 2048)

Upscales an image.

This supports upscaling images generated through the generate_images() method, or upscaling a new image that is 1024x1024.

Examples:

# Upscale a generated image
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
    prompt="Astronaut riding a horse",
)
model.upscale_image(image=response[0])

# Upscale a new 1024x1024 image
my_image = Image.load_from_file("my-image.png")
model.upscale_image(image=my_image)
  • Parameters

    • image (Union[GeneratedImage, **Image]) – Required. The generated image to upscale.

    • new_size (int) – The size of the biggest dimension of the upscaled image. Only 2048 and 4096 are currently supported. Results in a 2048x2048 or 4096x4096 image. Defaults to 2048 if not provided.

  • Returns

    An Image object.

class vertexai.preview.vision_models.ImageGenerationResponse(images: List[GeneratedImage])

Bases: object

Image generation response.

images()

The list of generated images.

  • Type

    List[vertexai.preview.vision_models.GeneratedImage]

_getitem_(idx: int)

Gets the generated image by index.

_iter_()

Iterates through the generated images.

class vertexai.preview.vision_models.ImageQnAModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai._model_garden._model_garden_models._ModelGardenModel

Answers questions about an image.

Examples:

model = ImageQnAModel.from_pretrained("imagetext@001")
image = Image.load_from_file("image.png")
answers = model.ask_question(
    image=image,
    question="What color is the car in this image?",
    # Optional:
    number_of_results=1,
)

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

ask_question(image: vertexai.vision_models.Image, question: str, *, number_of_results: int = 1)

Answers questions about an image.

  • Parameters

    • image – The image to get captions for. Size limit: 10 MB.

    • question – Question to ask about the image.

    • number_of_results – Number of captions to produce. Range: 1-3.

  • Returns

    A list of answers.

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

vertexai.preview.vision_models.ImageTextModel()

alias of vertexai.preview.vision_models._PreviewImageTextModel

class vertexai.preview.vision_models.MultiModalEmbeddingModel(model_id: str, endpoint_name: Optional[str] = None)

Bases: vertexai._model_garden._model_garden_models._ModelGardenModel

Generates embedding vectors from images.

Examples:

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file("image.png")

embeddings = model.get_embeddings(
    image=image,
    contextual_text="Hello world",
)
image_embedding = embeddings.image_embedding
text_embedding = embeddings.text_embedding

Creates a _ModelGardenModel.

This constructor should not be called directly. Use {model_class}.from_pretrained(model_name=…) instead.

  • Parameters

    • model_id – Identifier of a Model Garden Model. Example: “text-bison@001

    • endpoint_name – Vertex Endpoint resource name for the model

classmethod from_pretrained(model_name: str)

Loads a _ModelGardenModel.

  • Parameters

    model_name – Name of the model.

  • Returns

    An instance of a class derieved from _ModelGardenModel.

  • Raises

get_embeddings(image: Optional[vertexai.vision_models.Image] = None, contextual_text: Optional[str] = None)

Gets embedding vectors from the provided image.

  • Parameters

    • image (Image) – Optional. The image to generate embeddings for. One of image or contextual_text is required.

    • contextual_text (str) – Optional. Contextual text for your input image. If provided, the model will also generate an embedding vector for the provided contextual text. The returned image and text embedding vectors are in the same semantic space with the same dimensionality, and the vectors can be used interchangeably for use cases like searching image by text or searching text by image. One of image or contextual_text is required.

  • Returns

    The image and text embedding vectors.

  • Return type

    ImageEmbeddingResponse

class vertexai.preview.vision_models.MultiModalEmbeddingResponse(_prediction_response: Any, image_embedding: Optional[List[float]] = None, text_embedding: Optional[List[float]] = None)

Bases: object

The image embedding response.

image_embedding()

Optional. The embedding vector generated from your image.

text_embedding()

Optional. The embedding vector generated from the contextual text provided for your image.