Class CodeChatModel (1.39.0)

CodeChatModel(model_id: str, endpoint_name: typing.Optional[str] = None)

CodeChatModel represents a model that is capable of completing code.

.. rubric:: Examples

code_chat_model = CodeChatModel.from_pretrained("codechat-bison@001")

code_chat = code_chat_model.start_chat( context="I'm writing a large-scale enterprise application.", max_output_tokens=128, temperature=0.2, )

code_chat.send_message("Please help write a function to calculate the min of two numbers")

Methods

CodeChatModel

CodeChatModel(model_id: str, endpoint_name: typing.Optional[str] = None)

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=...) instead.

Parameters
Name Description
model_id str

Identifier of a Vertex LLM. Example: "text-bison@001"

endpoint_name typing.Optional[str]

Vertex Endpoint resource name for the model

from_pretrained

from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T

Loads a _ModelGardenModel.

Parameter
Name Description
model_name str

Name of the model.

Exceptions
Type Description
ValueError If model_name is unknown.
ValueError If model does not support this class.

get_tuned_model

get_tuned_model(
    tuned_model_name: str,
) -> vertexai.language_models._language_models._LanguageModel

Loads the specified tuned language model.

list_tuned_model_names

list_tuned_model_names() -> typing.Sequence[str]

Lists the names of tuned models.

start_chat

start_chat(
    *,
    context: typing.Optional[str] = None,
    max_output_tokens: typing.Optional[int] = None,
    temperature: typing.Optional[float] = None,
    message_history: typing.Optional[
        typing.List[vertexai.language_models.ChatMessage]
    ] = None,
    stop_sequences: typing.Optional[typing.List[str]] = None
) -> vertexai.language_models.CodeChatSession

Starts a chat session with the code chat model.

tune_model

tune_model(
    training_data: typing.Union[str, pandas.core.frame.DataFrame],
    *,
    train_steps: typing.Optional[int] = None,
    learning_rate_multiplier: typing.Optional[float] = None,
    tuning_job_location: typing.Optional[str] = None,
    tuned_model_location: typing.Optional[str] = None,
    model_display_name: typing.Optional[str] = None,
    default_context: typing.Optional[str] = None,
    accelerator_type: typing.Optional[typing.Literal["TPU", "GPU"]] = None,
    tuning_evaluation_spec: typing.Optional[TuningEvaluationSpec] = None
) -> _LanguageModelTuningJob

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage:

tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.get_tuned_model()  # Blocks until tuning is complete
Parameter
Name Description
training_data typing.Union[str, pandas.core.frame.DataFrame]

A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

Exceptions
Type Description
ValueError If the "tuning_job_location" value is not supported
ValueError If the "tuned_model_location" value is not supported
RuntimeError If the model does not support tuning
AttributeError If any attribute in the "tuning_evaluation_spec" is not supported