AutoML Server API.
The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.
An ID of a resource is the last element of the item's resource name. For projects/{project_id}/locations/{location_id}/datasets/{dataset_id}
, then the id for the item is {dataset_id}
.
Currently the only supported location_id
is "us-central1".
On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted. v1beta1
Package
@google-cloud/automlConstructors
(constructor)(opts)
constructor(opts?: ClientOptions);
Construct an instance of AutoMlClient.
Name | Description |
opts |
ClientOptions
|
Properties
apiEndpoint
static get apiEndpoint(): string;
The DNS address for this API service - same as servicePath(), exists for compatibility reasons.
auth
auth: gax.GoogleAuth;
autoMlStub
autoMlStub?: Promise<{
[name: string]: Function;
}>;
descriptors
descriptors: Descriptors;
innerApiCalls
innerApiCalls: {
[name: string]: Function;
};
operationsClient
operationsClient: gax.OperationsClient;
pathTemplates
pathTemplates: {
[name: string]: gax.PathTemplate;
};
port
static get port(): number;
The port for this API service.
scopes
static get scopes(): string[];
The scopes needed to make gRPC calls for every method defined in this service.
servicePath
static get servicePath(): string;
The DNS address for this API service.
warn
warn: (code: string, message: string, warnType?: string) => void;
Methods
annotationSpecPath(project, location, dataset, annotationSpec)
annotationSpecPath(project: string, location: string, dataset: string, annotationSpec: string): string;
Return a fully-qualified annotationSpec resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
annotationSpec |
string
|
Type | Description |
string | {string} Resource name string. |
checkCreateModelProgress(name)
checkCreateModelProgress(name: string): Promise<LROperation<protos.google.cloud.automl.v1beta1.Model, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by createModel()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.cloud.automl.v1beta1.Model, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the parent project where the model is being created.
*/
// const parent = 'abc123'
/**
* Required. The model to create.
*/
// const model = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callCreateModel() {
// Construct request
const request = {
parent,
model,
};
// Run request
const [operation] = await automlClient.createModel(request);
const [response] = await operation.promise();
console.log(response);
}
callCreateModel();
checkDeleteDatasetProgress(name)
checkDeleteDatasetProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by deleteDataset()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset to delete.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeleteDataset() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deleteDataset(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteDataset();
checkDeleteModelProgress(name)
checkDeleteModelProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by deleteModel()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model being deleted.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeleteModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deleteModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteModel();
checkDeployModelProgress(name)
checkDeployModelProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by deployModel()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Model deployment metadata specific to Image Object Detection.
*/
// const imageObjectDetectionModelDeploymentMetadata = {}
/**
* Model deployment metadata specific to Image Classification.
*/
// const imageClassificationModelDeploymentMetadata = {}
/**
* Required. Resource name of the model to deploy.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeployModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeployModel();
checkExportDataProgress(name)
checkExportDataProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by exportData()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset.
*/
// const name = 'abc123'
/**
* Required. The desired output location.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportData() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportData(request);
const [response] = await operation.promise();
console.log(response);
}
callExportData();
checkExportEvaluatedExamplesProgress(name)
checkExportEvaluatedExamplesProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by exportEvaluatedExamples()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model whose evaluated examples are to
* be exported.
*/
// const name = 'abc123'
/**
* Required. The desired output location and configuration.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportEvaluatedExamples() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportEvaluatedExamples(request);
const [response] = await operation.promise();
console.log(response);
}
callExportEvaluatedExamples();
checkExportModelProgress(name)
checkExportModelProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by exportModel()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model to export.
*/
// const name = 'abc123'
/**
* Required. The desired output location and configuration.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportModel() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportModel(request);
const [response] = await operation.promise();
console.log(response);
}
callExportModel();
checkImportDataProgress(name)
checkImportDataProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by importData()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Dataset name. Dataset must already exist. All imported
* annotations and examples will be added.
*/
// const name = 'abc123'
/**
* Required. The desired input location and its domain specific semantics,
* if any.
*/
// const inputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callImportData() {
// Construct request
const request = {
name,
inputConfig,
};
// Run request
const [operation] = await automlClient.importData(request);
const [response] = await operation.promise();
console.log(response);
}
callImportData();
checkUndeployModelProgress(name)
checkUndeployModelProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>>;
Check the status of the long running operation returned by undeployModel()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.automl.v1beta1.OperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model to undeploy.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callUndeployModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.undeployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callUndeployModel();
close()
close(): Promise<void>;
Terminate the gRPC channel and close the client.
The client will no longer be usable and all future behavior is undefined.
Type | Description |
Promise<void> | {Promise} A promise that resolves when the client is closed. |
columnSpecPath(project, location, dataset, tableSpec, columnSpec)
columnSpecPath(project: string, location: string, dataset: string, tableSpec: string, columnSpec: string): string;
Return a fully-qualified columnSpec resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
tableSpec |
string
|
columnSpec |
string
|
Type | Description |
string | {string} Resource name string. |
createDataset(request, options)
createDataset(request?: protos.google.cloud.automl.v1beta1.ICreateDatasetRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.ICreateDatasetRequest | undefined, {} | undefined]>;
Creates a dataset.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.ICreateDatasetRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.ICreateDatasetRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [Dataset]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the project to create the dataset for.
*/
// const parent = 'abc123'
/**
* Required. The dataset to create.
*/
// const dataset = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callCreateDataset() {
// Construct request
const request = {
parent,
dataset,
};
// Run request
const response = await automlClient.createDataset(request);
console.log(response);
}
callCreateDataset();
createDataset(request, options, callback)
createDataset(request: protos.google.cloud.automl.v1beta1.ICreateDatasetRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.ICreateDatasetRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.ICreateDatasetRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.ICreateDatasetRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createDataset(request, callback)
createDataset(request: protos.google.cloud.automl.v1beta1.ICreateDatasetRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.ICreateDatasetRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.ICreateDatasetRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.ICreateDatasetRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createModel(request, options)
createModel(request?: protos.google.cloud.automl.v1beta1.ICreateModelRequest, options?: CallOptions): Promise<[LROperation<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Creates a model. Returns a Model in the field when it completes. When you create a model, several model evaluations are created for it: a global evaluation, and one evaluation for each annotation spec.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.ICreateModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the parent project where the model is being created.
*/
// const parent = 'abc123'
/**
* Required. The model to create.
*/
// const model = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callCreateModel() {
// Construct request
const request = {
parent,
model,
};
// Run request
const [operation] = await automlClient.createModel(request);
const [response] = await operation.promise();
console.log(response);
}
callCreateModel();
createModel(request, options, callback)
createModel(request: protos.google.cloud.automl.v1beta1.ICreateModelRequest, options: CallOptions, callback: Callback<LROperation<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.ICreateModelRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createModel(request, callback)
createModel(request: protos.google.cloud.automl.v1beta1.ICreateModelRequest, callback: Callback<LROperation<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.ICreateModelRequest
|
callback |
Callback<LROperation<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
datasetPath(project, location, dataset)
datasetPath(project: string, location: string, dataset: string): string;
Return a fully-qualified dataset resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
Type | Description |
string | {string} Resource name string. |
deleteDataset(request, options)
deleteDataset(request?: protos.google.cloud.automl.v1beta1.IDeleteDatasetRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Deletes a dataset and all of its contents. Returns empty response in the field when it completes, and delete_details
in the field.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeleteDatasetRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset to delete.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeleteDataset() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deleteDataset(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteDataset();
deleteDataset(request, options, callback)
deleteDataset(request: protos.google.cloud.automl.v1beta1.IDeleteDatasetRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeleteDatasetRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteDataset(request, callback)
deleteDataset(request: protos.google.cloud.automl.v1beta1.IDeleteDatasetRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeleteDatasetRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteModel(request, options)
deleteModel(request?: protos.google.cloud.automl.v1beta1.IDeleteModelRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Deletes a model. Returns google.protobuf.Empty
in the field when it completes, and delete_details
in the field.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeleteModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model being deleted.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeleteModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deleteModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteModel();
deleteModel(request, options, callback)
deleteModel(request: protos.google.cloud.automl.v1beta1.IDeleteModelRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeleteModelRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteModel(request, callback)
deleteModel(request: protos.google.cloud.automl.v1beta1.IDeleteModelRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeleteModelRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deployModel(request, options)
deployModel(request?: protos.google.cloud.automl.v1beta1.IDeployModelRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parametrs (as e.g. changing
) will reset the deployment state without pausing the model's availability.
Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage deployment automatically.
Returns an empty response in the field when it completes.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeployModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Model deployment metadata specific to Image Object Detection.
*/
// const imageObjectDetectionModelDeploymentMetadata = {}
/**
* Model deployment metadata specific to Image Classification.
*/
// const imageClassificationModelDeploymentMetadata = {}
/**
* Required. Resource name of the model to deploy.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callDeployModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.deployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeployModel();
deployModel(request, options, callback)
deployModel(request: protos.google.cloud.automl.v1beta1.IDeployModelRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeployModelRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deployModel(request, callback)
deployModel(request: protos.google.cloud.automl.v1beta1.IDeployModelRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IDeployModelRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
exportData(request, options)
exportData(request?: protos.google.cloud.automl.v1beta1.IExportDataRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Exports dataset's data to the provided output location. Returns an empty response in the field when it completes.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportDataRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset.
*/
// const name = 'abc123'
/**
* Required. The desired output location.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportData() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportData(request);
const [response] = await operation.promise();
console.log(response);
}
callExportData();
exportData(request, options, callback)
exportData(request: protos.google.cloud.automl.v1beta1.IExportDataRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportDataRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
exportData(request, callback)
exportData(request: protos.google.cloud.automl.v1beta1.IExportDataRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportDataRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
exportEvaluatedExamples(request, options)
exportEvaluatedExamples(request?: protos.google.cloud.automl.v1beta1.IExportEvaluatedExamplesRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Exports examples on which the model was evaluated (i.e. which were in the TEST set of the dataset the model was created from), together with their ground truth annotations and the annotations created (predicted) by the model. The examples, ground truth and predictions are exported in the state they were at the moment the model was evaluated.
This export is available only for 30 days since the model evaluation is created.
Currently only available for Tables.
Returns an empty response in the field when it completes.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportEvaluatedExamplesRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model whose evaluated examples are to
* be exported.
*/
// const name = 'abc123'
/**
* Required. The desired output location and configuration.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportEvaluatedExamples() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportEvaluatedExamples(request);
const [response] = await operation.promise();
console.log(response);
}
callExportEvaluatedExamples();
exportEvaluatedExamples(request, options, callback)
exportEvaluatedExamples(request: protos.google.cloud.automl.v1beta1.IExportEvaluatedExamplesRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportEvaluatedExamplesRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
exportEvaluatedExamples(request, callback)
exportEvaluatedExamples(request: protos.google.cloud.automl.v1beta1.IExportEvaluatedExamplesRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportEvaluatedExamplesRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
exportModel(request, options)
exportModel(request?: protos.google.cloud.automl.v1beta1.IExportModelRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Exports a trained, "export-able", model to a user specified Google Cloud Storage location. A model is considered export-able if and only if it has an export format defined for it in
.
Returns an empty response in the field when it completes.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model to export.
*/
// const name = 'abc123'
/**
* Required. The desired output location and configuration.
*/
// const outputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callExportModel() {
// Construct request
const request = {
name,
outputConfig,
};
// Run request
const [operation] = await automlClient.exportModel(request);
const [response] = await operation.promise();
console.log(response);
}
callExportModel();
exportModel(request, options, callback)
exportModel(request: protos.google.cloud.automl.v1beta1.IExportModelRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportModelRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
exportModel(request, callback)
exportModel(request: protos.google.cloud.automl.v1beta1.IExportModelRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IExportModelRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getAnnotationSpec(request, options)
getAnnotationSpec(request?: protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IAnnotationSpec, protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest | undefined, {} | undefined]>;
Gets an annotation spec.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IAnnotationSpec, protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [AnnotationSpec]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the annotation spec to retrieve.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callGetAnnotationSpec() {
// Construct request
const request = {
name,
};
// Run request
const response = await automlClient.getAnnotationSpec(request);
console.log(response);
}
callGetAnnotationSpec();
getAnnotationSpec(request, options, callback)
getAnnotationSpec(request: protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IAnnotationSpec, protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IAnnotationSpec, protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getAnnotationSpec(request, callback)
getAnnotationSpec(request: protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IAnnotationSpec, protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IAnnotationSpec, protos.google.cloud.automl.v1beta1.IGetAnnotationSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getColumnSpec(request, options)
getColumnSpec(request?: protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest | undefined, {} | undefined]>;
Gets a column spec.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [ColumnSpec]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the column spec to retrieve.
*/
// const name = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const fieldMask = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callGetColumnSpec() {
// Construct request
const request = {
name,
};
// Run request
const response = await automlClient.getColumnSpec(request);
console.log(response);
}
callGetColumnSpec();
getColumnSpec(request, options, callback)
getColumnSpec(request: protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getColumnSpec(request, callback)
getColumnSpec(request: protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IGetColumnSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getDataset(request, options)
getDataset(request?: protos.google.cloud.automl.v1beta1.IGetDatasetRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IGetDatasetRequest | undefined, {} | undefined]>;
Gets a dataset.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetDatasetRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IGetDatasetRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [Dataset]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset to retrieve.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callGetDataset() {
// Construct request
const request = {
name,
};
// Run request
const response = await automlClient.getDataset(request);
console.log(response);
}
callGetDataset();
getDataset(request, options, callback)
getDataset(request: protos.google.cloud.automl.v1beta1.IGetDatasetRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IGetDatasetRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetDatasetRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IGetDatasetRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getDataset(request, callback)
getDataset(request: protos.google.cloud.automl.v1beta1.IGetDatasetRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IGetDatasetRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetDatasetRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IGetDatasetRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getModel(request, options)
getModel(request?: protos.google.cloud.automl.v1beta1.IGetModelRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IGetModelRequest | undefined, {} | undefined]>;
Gets a model.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IGetModelRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [Model]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callGetModel() {
// Construct request
const request = {
name,
};
// Run request
const response = await automlClient.getModel(request);
console.log(response);
}
callGetModel();
getModel(request, options, callback)
getModel(request: protos.google.cloud.automl.v1beta1.IGetModelRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IGetModelRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetModelRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IGetModelRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getModel(request, callback)
getModel(request: protos.google.cloud.automl.v1beta1.IGetModelRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IGetModelRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetModelRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IModel, protos.google.cloud.automl.v1beta1.IGetModelRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getModelEvaluation(request, options)
getModelEvaluation(request?: protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IModelEvaluation, protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest | undefined, {} | undefined]>;
Gets a model evaluation.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IModelEvaluation, protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [ModelEvaluation]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name for the model evaluation.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callGetModelEvaluation() {
// Construct request
const request = {
name,
};
// Run request
const response = await automlClient.getModelEvaluation(request);
console.log(response);
}
callGetModelEvaluation();
getModelEvaluation(request, options, callback)
getModelEvaluation(request: protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IModelEvaluation, protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IModelEvaluation, protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getModelEvaluation(request, callback)
getModelEvaluation(request: protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IModelEvaluation, protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IModelEvaluation, protos.google.cloud.automl.v1beta1.IGetModelEvaluationRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getProjectId()
getProjectId(): Promise<string>;
Type | Description |
Promise<string> |
getProjectId(callback)
getProjectId(callback: Callback<string, undefined, undefined>): void;
Name | Description |
callback |
Callback<string, undefined, undefined>
|
Type | Description |
void |
getTableSpec(request, options)
getTableSpec(request?: protos.google.cloud.automl.v1beta1.IGetTableSpecRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IGetTableSpecRequest | undefined, {} | undefined]>;
Gets a table spec.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetTableSpecRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IGetTableSpecRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [TableSpec]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the table spec to retrieve.
*/
// const name = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const fieldMask = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callGetTableSpec() {
// Construct request
const request = {
name,
};
// Run request
const response = await automlClient.getTableSpec(request);
console.log(response);
}
callGetTableSpec();
getTableSpec(request, options, callback)
getTableSpec(request: protos.google.cloud.automl.v1beta1.IGetTableSpecRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IGetTableSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetTableSpecRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IGetTableSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getTableSpec(request, callback)
getTableSpec(request: protos.google.cloud.automl.v1beta1.IGetTableSpecRequest, callback: Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IGetTableSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IGetTableSpecRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IGetTableSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
importData(request, options)
importData(request?: protos.google.cloud.automl.v1beta1.IImportDataRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Imports data into a dataset. For Tables this method can only be called on an empty Dataset.
For Tables: * A parameter must be explicitly set. Returns an empty response in the field when it completes.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IImportDataRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Dataset name. Dataset must already exist. All imported
* annotations and examples will be added.
*/
// const name = 'abc123'
/**
* Required. The desired input location and its domain specific semantics,
* if any.
*/
// const inputConfig = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callImportData() {
// Construct request
const request = {
name,
inputConfig,
};
// Run request
const [operation] = await automlClient.importData(request);
const [response] = await operation.promise();
console.log(response);
}
callImportData();
importData(request, options, callback)
importData(request: protos.google.cloud.automl.v1beta1.IImportDataRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IImportDataRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
importData(request, callback)
importData(request: protos.google.cloud.automl.v1beta1.IImportDataRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IImportDataRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
initialize()
initialize(): Promise<{
[name: string]: Function;
}>;
Initialize the client. Performs asynchronous operations (such as authentication) and prepares the client. This function will be called automatically when any class method is called for the first time, but if you need to initialize it before calling an actual method, feel free to call initialize() directly.
You can await on this method if you want to make sure the client is initialized.
Type | Description |
Promise<{ [name: string]: Function; }> | {Promise} A promise that resolves to an authenticated service stub. |
listColumnSpecs(request, options)
listColumnSpecs(request?: protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IColumnSpec[], protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest | null, protos.google.cloud.automl.v1beta1.IListColumnSpecsResponse]>;
Lists column specs in a table spec.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IColumnSpec[], protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest | null, protos.google.cloud.automl.v1beta1.IListColumnSpecsResponse]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of [ColumnSpec]. The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listColumnSpecs(request, options, callback)
listColumnSpecs(request: protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, protos.google.cloud.automl.v1beta1.IListColumnSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IColumnSpec>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, protos.google.cloud.automl.v1beta1.IListColumnSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IColumnSpec>
|
Type | Description |
void |
listColumnSpecs(request, callback)
listColumnSpecs(request: protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, protos.google.cloud.automl.v1beta1.IListColumnSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IColumnSpec>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, protos.google.cloud.automl.v1beta1.IListColumnSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IColumnSpec>
|
Type | Description |
void |
listColumnSpecsAsync(request, options)
listColumnSpecsAsync(request?: protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.automl.v1beta1.IColumnSpec>;
Equivalent to listColumnSpecs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.automl.v1beta1.IColumnSpec> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing [ColumnSpec]. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the table spec to list column specs from.
*/
// const parent = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const fieldMask = {}
/**
* Filter expression, see go/filtering.
*/
// const filter = 'abc123'
/**
* Requested page size. The server can return fewer results than requested.
* If unspecified, the server will pick a default size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return.
* Typically obtained from the
* ListColumnSpecsResponse.next_page_token google.cloud.automl.v1beta1.ListColumnSpecsResponse.next_page_token field of the previous
* AutoMl.ListColumnSpecs google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListColumnSpecs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listColumnSpecsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListColumnSpecs();
listColumnSpecsStream(request, options)
listColumnSpecsStream(request?: protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListColumnSpecsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing [ColumnSpec] on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listDatasets(request, options)
listDatasets(request?: protos.google.cloud.automl.v1beta1.IListDatasetsRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IDataset[], protos.google.cloud.automl.v1beta1.IListDatasetsRequest | null, protos.google.cloud.automl.v1beta1.IListDatasetsResponse]>;
Lists datasets in a project.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListDatasetsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IDataset[], protos.google.cloud.automl.v1beta1.IListDatasetsRequest | null, protos.google.cloud.automl.v1beta1.IListDatasetsResponse]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of [Dataset]. The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listDatasets(request, options, callback)
listDatasets(request: protos.google.cloud.automl.v1beta1.IListDatasetsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListDatasetsRequest, protos.google.cloud.automl.v1beta1.IListDatasetsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IDataset>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListDatasetsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListDatasetsRequest, protos.google.cloud.automl.v1beta1.IListDatasetsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IDataset>
|
Type | Description |
void |
listDatasets(request, callback)
listDatasets(request: protos.google.cloud.automl.v1beta1.IListDatasetsRequest, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListDatasetsRequest, protos.google.cloud.automl.v1beta1.IListDatasetsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IDataset>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListDatasetsRequest
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListDatasetsRequest, protos.google.cloud.automl.v1beta1.IListDatasetsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IDataset>
|
Type | Description |
void |
listDatasetsAsync(request, options)
listDatasetsAsync(request?: protos.google.cloud.automl.v1beta1.IListDatasetsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.automl.v1beta1.IDataset>;
Equivalent to listDatasets
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListDatasetsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.automl.v1beta1.IDataset> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing [Dataset]. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the project from which to list datasets.
*/
// const parent = 'abc123'
/**
* An expression for filtering the results of the request.
* * `dataset_metadata` - for existence of the case (e.g.
* `image_classification_dataset_metadata:*`). Some examples of
* using the filter are:
* * `translation_dataset_metadata:*` --> The dataset has
* `translation_dataset_metadata`.
*/
// const filter = 'abc123'
/**
* Requested page size. Server may return fewer results than requested.
* If unspecified, server will pick a default size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return
* Typically obtained via
* ListDatasetsResponse.next_page_token google.cloud.automl.v1beta1.ListDatasetsResponse.next_page_token of the previous
* AutoMl.ListDatasets google.cloud.automl.v1beta1.AutoMl.ListDatasets call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListDatasets() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listDatasetsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListDatasets();
listDatasetsStream(request, options)
listDatasetsStream(request?: protos.google.cloud.automl.v1beta1.IListDatasetsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListDatasetsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing [Dataset] on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listModelEvaluations(request, options)
listModelEvaluations(request?: protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IModelEvaluation[], protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest | null, protos.google.cloud.automl.v1beta1.IListModelEvaluationsResponse]>;
Lists model evaluations.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IModelEvaluation[], protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest | null, protos.google.cloud.automl.v1beta1.IListModelEvaluationsResponse]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of [ModelEvaluation]. The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listModelEvaluations(request, options, callback)
listModelEvaluations(request: protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, protos.google.cloud.automl.v1beta1.IListModelEvaluationsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModelEvaluation>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, protos.google.cloud.automl.v1beta1.IListModelEvaluationsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModelEvaluation>
|
Type | Description |
void |
listModelEvaluations(request, callback)
listModelEvaluations(request: protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, protos.google.cloud.automl.v1beta1.IListModelEvaluationsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModelEvaluation>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, protos.google.cloud.automl.v1beta1.IListModelEvaluationsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModelEvaluation>
|
Type | Description |
void |
listModelEvaluationsAsync(request, options)
listModelEvaluationsAsync(request?: protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.automl.v1beta1.IModelEvaluation>;
Equivalent to listModelEvaluations
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.automl.v1beta1.IModelEvaluation> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing [ModelEvaluation]. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model to list the model evaluations for.
* If modelId is set as "-", this will list model evaluations from across all
* models of the parent location.
*/
// const parent = 'abc123'
/**
* An expression for filtering the results of the request.
* * `annotation_spec_id` - for =, != or existence. See example below for
* the last.
* Some examples of using the filter are:
* * `annotation_spec_id!=4` --> The model evaluation was done for
* annotation spec with ID different than 4.
* * `NOT annotation_spec_id:*` --> The model evaluation was done for
* aggregate of all annotation specs.
*/
// const filter = 'abc123'
/**
* Requested page size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return.
* Typically obtained via
* ListModelEvaluationsResponse.next_page_token google.cloud.automl.v1beta1.ListModelEvaluationsResponse.next_page_token of the previous
* AutoMl.ListModelEvaluations google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListModelEvaluations() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listModelEvaluationsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListModelEvaluations();
listModelEvaluationsStream(request, options)
listModelEvaluationsStream(request?: protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelEvaluationsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing [ModelEvaluation] on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listModels(request, options)
listModels(request?: protos.google.cloud.automl.v1beta1.IListModelsRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IModel[], protos.google.cloud.automl.v1beta1.IListModelsRequest | null, protos.google.cloud.automl.v1beta1.IListModelsResponse]>;
Lists models.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IModel[], protos.google.cloud.automl.v1beta1.IListModelsRequest | null, protos.google.cloud.automl.v1beta1.IListModelsResponse]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of [Model]. The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listModels(request, options, callback)
listModels(request: protos.google.cloud.automl.v1beta1.IListModelsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelsRequest, protos.google.cloud.automl.v1beta1.IListModelsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModel>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelsRequest, protos.google.cloud.automl.v1beta1.IListModelsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModel>
|
Type | Description |
void |
listModels(request, callback)
listModels(request: protos.google.cloud.automl.v1beta1.IListModelsRequest, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelsRequest, protos.google.cloud.automl.v1beta1.IListModelsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModel>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelsRequest
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListModelsRequest, protos.google.cloud.automl.v1beta1.IListModelsResponse | null | undefined, protos.google.cloud.automl.v1beta1.IModel>
|
Type | Description |
void |
listModelsAsync(request, options)
listModelsAsync(request?: protos.google.cloud.automl.v1beta1.IListModelsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.automl.v1beta1.IModel>;
Equivalent to listModels
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.automl.v1beta1.IModel> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing [Model]. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the project, from which to list the models.
*/
// const parent = 'abc123'
/**
* An expression for filtering the results of the request.
* * `model_metadata` - for existence of the case (e.g.
* `video_classification_model_metadata:*`).
* * `dataset_id` - for = or !=. Some examples of using the filter are:
* * `image_classification_model_metadata:*` --> The model has
* `image_classification_model_metadata`.
* * `dataset_id=5` --> The model was created from a dataset with ID 5.
*/
// const filter = 'abc123'
/**
* Requested page size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return
* Typically obtained via
* ListModelsResponse.next_page_token google.cloud.automl.v1beta1.ListModelsResponse.next_page_token of the previous
* AutoMl.ListModels google.cloud.automl.v1beta1.AutoMl.ListModels call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListModels() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listModelsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListModels();
listModelsStream(request, options)
listModelsStream(request?: protos.google.cloud.automl.v1beta1.IListModelsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListModelsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing [Model] on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listTableSpecs(request, options)
listTableSpecs(request?: protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.ITableSpec[], protos.google.cloud.automl.v1beta1.IListTableSpecsRequest | null, protos.google.cloud.automl.v1beta1.IListTableSpecsResponse]>;
Lists table specs in a dataset.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListTableSpecsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.ITableSpec[], protos.google.cloud.automl.v1beta1.IListTableSpecsRequest | null, protos.google.cloud.automl.v1beta1.IListTableSpecsResponse]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of [TableSpec]. The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listTableSpecs(request, options, callback)
listTableSpecs(request: protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, protos.google.cloud.automl.v1beta1.IListTableSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.ITableSpec>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListTableSpecsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, protos.google.cloud.automl.v1beta1.IListTableSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.ITableSpec>
|
Type | Description |
void |
listTableSpecs(request, callback)
listTableSpecs(request: protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, callback: PaginationCallback<protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, protos.google.cloud.automl.v1beta1.IListTableSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.ITableSpec>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListTableSpecsRequest
|
callback |
PaginationCallback<protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, protos.google.cloud.automl.v1beta1.IListTableSpecsResponse | null | undefined, protos.google.cloud.automl.v1beta1.ITableSpec>
|
Type | Description |
void |
listTableSpecsAsync(request, options)
listTableSpecsAsync(request?: protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.automl.v1beta1.ITableSpec>;
Equivalent to listTableSpecs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListTableSpecsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.automl.v1beta1.ITableSpec> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing [TableSpec]. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the dataset to list table specs from.
*/
// const parent = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const fieldMask = {}
/**
* Filter expression, see go/filtering.
*/
// const filter = 'abc123'
/**
* Requested page size. The server can return fewer results than requested.
* If unspecified, the server will pick a default size.
*/
// const pageSize = 1234
/**
* A token identifying a page of results for the server to return.
* Typically obtained from the
* ListTableSpecsResponse.next_page_token google.cloud.automl.v1beta1.ListTableSpecsResponse.next_page_token field of the previous
* AutoMl.ListTableSpecs google.cloud.automl.v1beta1.AutoMl.ListTableSpecs call.
*/
// const pageToken = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callListTableSpecs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await automlClient.listTableSpecsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListTableSpecs();
listTableSpecsStream(request, options)
listTableSpecsStream(request?: protos.google.cloud.automl.v1beta1.IListTableSpecsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IListTableSpecsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing [TableSpec] on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
locationPath(project, location)
locationPath(project: string, location: string): string;
Return a fully-qualified location resource name string.
Name | Description |
project |
string
|
location |
string
|
Type | Description |
string | {string} Resource name string. |
matchAnnotationSpecFromAnnotationSpecName(annotationSpecName)
matchAnnotationSpecFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the annotation_spec from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the annotation_spec. |
matchColumnSpecFromColumnSpecName(columnSpecName)
matchColumnSpecFromColumnSpecName(columnSpecName: string): string | number;
Parse the column_spec from ColumnSpec resource.
Name | Description |
columnSpecName |
string
A fully-qualified path representing ColumnSpec resource. |
Type | Description |
string | number | {string} A string representing the column_spec. |
matchDatasetFromAnnotationSpecName(annotationSpecName)
matchDatasetFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the dataset from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromColumnSpecName(columnSpecName)
matchDatasetFromColumnSpecName(columnSpecName: string): string | number;
Parse the dataset from ColumnSpec resource.
Name | Description |
columnSpecName |
string
A fully-qualified path representing ColumnSpec resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromDatasetName(datasetName)
matchDatasetFromDatasetName(datasetName: string): string | number;
Parse the dataset from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromTableSpecName(tableSpecName)
matchDatasetFromTableSpecName(tableSpecName: string): string | number;
Parse the dataset from TableSpec resource.
Name | Description |
tableSpecName |
string
A fully-qualified path representing TableSpec resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchLocationFromAnnotationSpecName(annotationSpecName)
matchLocationFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the location from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromColumnSpecName(columnSpecName)
matchLocationFromColumnSpecName(columnSpecName: string): string | number;
Parse the location from ColumnSpec resource.
Name | Description |
columnSpecName |
string
A fully-qualified path representing ColumnSpec resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromDatasetName(datasetName)
matchLocationFromDatasetName(datasetName: string): string | number;
Parse the location from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromLocationName(locationName)
matchLocationFromLocationName(locationName: string): string | number;
Parse the location from Location resource.
Name | Description |
locationName |
string
A fully-qualified path representing Location resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelEvaluationName(modelEvaluationName)
matchLocationFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the location from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelName(modelName)
matchLocationFromModelName(modelName: string): string | number;
Parse the location from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTableSpecName(tableSpecName)
matchLocationFromTableSpecName(tableSpecName: string): string | number;
Parse the location from TableSpec resource.
Name | Description |
tableSpecName |
string
A fully-qualified path representing TableSpec resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchModelEvaluationFromModelEvaluationName(modelEvaluationName)
matchModelEvaluationFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the model_evaluation from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the model_evaluation. |
matchModelFromModelEvaluationName(modelEvaluationName)
matchModelFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the model from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchModelFromModelName(modelName)
matchModelFromModelName(modelName: string): string | number;
Parse the model from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchProjectFromAnnotationSpecName(annotationSpecName)
matchProjectFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the project from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromColumnSpecName(columnSpecName)
matchProjectFromColumnSpecName(columnSpecName: string): string | number;
Parse the project from ColumnSpec resource.
Name | Description |
columnSpecName |
string
A fully-qualified path representing ColumnSpec resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromDatasetName(datasetName)
matchProjectFromDatasetName(datasetName: string): string | number;
Parse the project from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromLocationName(locationName)
matchProjectFromLocationName(locationName: string): string | number;
Parse the project from Location resource.
Name | Description |
locationName |
string
A fully-qualified path representing Location resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelEvaluationName(modelEvaluationName)
matchProjectFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the project from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelName(modelName)
matchProjectFromModelName(modelName: string): string | number;
Parse the project from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTableSpecName(tableSpecName)
matchProjectFromTableSpecName(tableSpecName: string): string | number;
Parse the project from TableSpec resource.
Name | Description |
tableSpecName |
string
A fully-qualified path representing TableSpec resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchTableSpecFromColumnSpecName(columnSpecName)
matchTableSpecFromColumnSpecName(columnSpecName: string): string | number;
Parse the table_spec from ColumnSpec resource.
Name | Description |
columnSpecName |
string
A fully-qualified path representing ColumnSpec resource. |
Type | Description |
string | number | {string} A string representing the table_spec. |
matchTableSpecFromTableSpecName(tableSpecName)
matchTableSpecFromTableSpecName(tableSpecName: string): string | number;
Parse the table_spec from TableSpec resource.
Name | Description |
tableSpecName |
string
A fully-qualified path representing TableSpec resource. |
Type | Description |
string | number | {string} A string representing the table_spec. |
modelEvaluationPath(project, location, model, modelEvaluation)
modelEvaluationPath(project: string, location: string, model: string, modelEvaluation: string): string;
Return a fully-qualified modelEvaluation resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
modelEvaluation |
string
|
Type | Description |
string | {string} Resource name string. |
modelPath(project, location, model)
modelPath(project: string, location: string, model: string): string;
Return a fully-qualified model resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
Type | Description |
string | {string} Resource name string. |
tableSpecPath(project, location, dataset, tableSpec)
tableSpecPath(project: string, location: string, dataset: string, tableSpec: string): string;
Return a fully-qualified tableSpec resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
tableSpec |
string
|
Type | Description |
string | {string} Resource name string. |
undeployModel(request, options)
undeployModel(request?: protos.google.cloud.automl.v1beta1.IUndeployModelRequest, options?: CallOptions): Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]>;
Undeploys a model. If the model is not deployed this method has no effect.
Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically.
Returns an empty response in the field when it completes.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUndeployModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. Resource name of the model to undeploy.
*/
// const name = 'abc123'
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callUndeployModel() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await automlClient.undeployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callUndeployModel();
undeployModel(request, options, callback)
undeployModel(request: protos.google.cloud.automl.v1beta1.IUndeployModelRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUndeployModelRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
undeployModel(request, callback)
undeployModel(request: protos.google.cloud.automl.v1beta1.IUndeployModelRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUndeployModelRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.automl.v1beta1.IOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateColumnSpec(request, options)
updateColumnSpec(request?: protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest | undefined, {} | undefined]>;
Updates a column spec.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [ColumnSpec]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The column spec which replaces the resource on the server.
*/
// const columnSpec = {}
/**
* The update mask applies to the resource.
*/
// const updateMask = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callUpdateColumnSpec() {
// Construct request
const request = {
columnSpec,
};
// Run request
const response = await automlClient.updateColumnSpec(request);
console.log(response);
}
callUpdateColumnSpec();
updateColumnSpec(request, options, callback)
updateColumnSpec(request: protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateColumnSpec(request, callback)
updateColumnSpec(request: protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IColumnSpec, protos.google.cloud.automl.v1beta1.IUpdateColumnSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateDataset(request, options)
updateDataset(request?: protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest | undefined, {} | undefined]>;
Updates a dataset.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [Dataset]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The dataset which replaces the resource on the server.
*/
// const dataset = {}
/**
* The update mask applies to the resource.
*/
// const updateMask = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callUpdateDataset() {
// Construct request
const request = {
dataset,
};
// Run request
const response = await automlClient.updateDataset(request);
console.log(response);
}
callUpdateDataset();
updateDataset(request, options, callback)
updateDataset(request: protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateDataset(request, callback)
updateDataset(request: protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest, callback: Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.IDataset, protos.google.cloud.automl.v1beta1.IUpdateDatasetRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateTableSpec(request, options)
updateTableSpec(request?: protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest, options?: CallOptions): Promise<[protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest | undefined, {} | undefined]>;
Updates a table spec.
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest | undefined, {} | undefined]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [TableSpec]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The table spec which replaces the resource on the server.
*/
// const tableSpec = {}
/**
* The update mask applies to the resource.
*/
// const updateMask = {}
// Imports the Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function callUpdateTableSpec() {
// Construct request
const request = {
tableSpec,
};
// Run request
const response = await automlClient.updateTableSpec(request);
console.log(response);
}
callUpdateTableSpec();
updateTableSpec(request, options, callback)
updateTableSpec(request: protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest, options: CallOptions, callback: Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateTableSpec(request, callback)
updateTableSpec(request: protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest, callback: Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest
|
callback |
Callback<protos.google.cloud.automl.v1beta1.ITableSpec, protos.google.cloud.automl.v1beta1.IUpdateTableSpecRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |